用于近红外成像和代谢研究的快速合成超小银纳米团簇

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yao Huang, Jialian Li, Hui Feng, Huan Du, Zhiming Deng
{"title":"用于近红外成像和代谢研究的快速合成超小银纳米团簇","authors":"Yao Huang, Jialian Li, Hui Feng, Huan Du, Zhiming Deng","doi":"10.1021/acs.nanolett.4c05525","DOIUrl":null,"url":null,"abstract":"Near-infrared-II (NIR-II) imaging has emerged as a powerful technique for high-resolution visualization of deep anatomical features, benefiting from minimized autofluorescence, diminished optical scattering, and absorption of tissue. However, the current synthesis of NIR-II nanoprobes is a time-consuming, labor-intensive process with low yields, highlighting the need for an efficient and rapid synthesis approach instead. Herein, we report DNA-templated silver nanoclusters (Ag NCs) with NIR-II emission that can be rapidly synthesized via a simple one-spot process within 2 min. The Ag NCs are about 1.6 nm in size, making it easy for them to enter into the capillaries of muscle tissue. <i>In vivo</i> NIR-II imaging results indicate that the Ag NCs we designed are promising probes for studying the metabolic pathways of nanoprobes after intramuscular injection. Therefore, it is expected that Ag NCs with ultrafast room temperature synthesis, excellent NIR-II emission, and ultrasmall size will be ideal probes for biological applications.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"20 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Rapidly Synthesized, Ultrasmall Silver Nanocluster for Near-Infrared-II Imaging and Metabolic Studies\",\"authors\":\"Yao Huang, Jialian Li, Hui Feng, Huan Du, Zhiming Deng\",\"doi\":\"10.1021/acs.nanolett.4c05525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near-infrared-II (NIR-II) imaging has emerged as a powerful technique for high-resolution visualization of deep anatomical features, benefiting from minimized autofluorescence, diminished optical scattering, and absorption of tissue. However, the current synthesis of NIR-II nanoprobes is a time-consuming, labor-intensive process with low yields, highlighting the need for an efficient and rapid synthesis approach instead. Herein, we report DNA-templated silver nanoclusters (Ag NCs) with NIR-II emission that can be rapidly synthesized via a simple one-spot process within 2 min. The Ag NCs are about 1.6 nm in size, making it easy for them to enter into the capillaries of muscle tissue. <i>In vivo</i> NIR-II imaging results indicate that the Ag NCs we designed are promising probes for studying the metabolic pathways of nanoprobes after intramuscular injection. Therefore, it is expected that Ag NCs with ultrafast room temperature synthesis, excellent NIR-II emission, and ultrasmall size will be ideal probes for biological applications.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c05525\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05525","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近红外成像(NIR-II)已成为一种强大的技术,用于深度解剖特征的高分辨率可视化,受益于最小的自身荧光,减少光学散射和组织吸收。然而,目前NIR-II纳米探针的合成是一个耗时、劳动密集型的过程,产率低,因此需要一种高效、快速的合成方法。在此,我们报道了具有NIR-II发射的dna模板银纳米簇(Ag NCs),可以通过简单的单点工艺在2分钟内快速合成。Ag NCs的尺寸约为1.6 nm,使其易于进入肌肉组织的毛细血管。体内NIR-II成像结果表明,我们设计的纳米探针是研究肌肉注射后纳米探针代谢途径的有希望的探针。因此,具有超快室温合成、优异的NIR-II发射和超小尺寸的银纳米管有望成为理想的生物探针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Rapidly Synthesized, Ultrasmall Silver Nanocluster for Near-Infrared-II Imaging and Metabolic Studies

A Rapidly Synthesized, Ultrasmall Silver Nanocluster for Near-Infrared-II Imaging and Metabolic Studies
Near-infrared-II (NIR-II) imaging has emerged as a powerful technique for high-resolution visualization of deep anatomical features, benefiting from minimized autofluorescence, diminished optical scattering, and absorption of tissue. However, the current synthesis of NIR-II nanoprobes is a time-consuming, labor-intensive process with low yields, highlighting the need for an efficient and rapid synthesis approach instead. Herein, we report DNA-templated silver nanoclusters (Ag NCs) with NIR-II emission that can be rapidly synthesized via a simple one-spot process within 2 min. The Ag NCs are about 1.6 nm in size, making it easy for them to enter into the capillaries of muscle tissue. In vivo NIR-II imaging results indicate that the Ag NCs we designed are promising probes for studying the metabolic pathways of nanoprobes after intramuscular injection. Therefore, it is expected that Ag NCs with ultrafast room temperature synthesis, excellent NIR-II emission, and ultrasmall size will be ideal probes for biological applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信