柔性光伏疲劳系数用于机械设备性能的量化

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lulu Sun, Kenjiro Fukuda, Ruiqi Guo, Luigi A. Castriotta, Karen Forberich, Yinhua Zhou, Takao Someya, Christoph J. Brabec, Osbel Almora
{"title":"柔性光伏疲劳系数用于机械设备性能的量化","authors":"Lulu Sun,&nbsp;Kenjiro Fukuda,&nbsp;Ruiqi Guo,&nbsp;Luigi A. Castriotta,&nbsp;Karen Forberich,&nbsp;Yinhua Zhou,&nbsp;Takao Someya,&nbsp;Christoph J. Brabec,&nbsp;Osbel Almora","doi":"10.1002/adfm.202422706","DOIUrl":null,"url":null,"abstract":"<p>Flexible emerging photovoltaic technologies, such as organic and perovskite photovoltaics, hold great potential for integration into tents, wearable electronics, and other portable applications. Recently, Fukuda et al. (2024) propose a bending test protocol for standardizing the mechanical performance characterization of flexible solar cells, focusing on 1% strain over 1 000 bending cycles. This marked an important step toward establishing consistency and good practices in the literature. However, even with this unified protocol, accurately comparing the mechanical flexibility of solar cells is hindered by the variated influence of parameters like thickness, bending radius, and power conversion efficiency (<i>PCE</i>) evolution during mechanical testing. Herein, a new figure of merit is introduced, the flexible photovoltaic fatigue factor (<i>F</i>), which integrates <i>PCE</i> retention, strain, and bending cycles into a cohesive framework. Guided by a detailed multilayer mechanical model, this metric enables more accurate strain analysis and promotes consistent reporting, paving the way for performance optimization in flexible photovoltaics.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 19","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202422706","citationCount":"0","resultStr":"{\"title\":\"A Flexible Photovoltaic Fatigue Factor for Quantification of Mechanical Device Performance\",\"authors\":\"Lulu Sun,&nbsp;Kenjiro Fukuda,&nbsp;Ruiqi Guo,&nbsp;Luigi A. Castriotta,&nbsp;Karen Forberich,&nbsp;Yinhua Zhou,&nbsp;Takao Someya,&nbsp;Christoph J. Brabec,&nbsp;Osbel Almora\",\"doi\":\"10.1002/adfm.202422706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flexible emerging photovoltaic technologies, such as organic and perovskite photovoltaics, hold great potential for integration into tents, wearable electronics, and other portable applications. Recently, Fukuda et al. (2024) propose a bending test protocol for standardizing the mechanical performance characterization of flexible solar cells, focusing on 1% strain over 1 000 bending cycles. This marked an important step toward establishing consistency and good practices in the literature. However, even with this unified protocol, accurately comparing the mechanical flexibility of solar cells is hindered by the variated influence of parameters like thickness, bending radius, and power conversion efficiency (<i>PCE</i>) evolution during mechanical testing. Herein, a new figure of merit is introduced, the flexible photovoltaic fatigue factor (<i>F</i>), which integrates <i>PCE</i> retention, strain, and bending cycles into a cohesive framework. Guided by a detailed multilayer mechanical model, this metric enables more accurate strain analysis and promotes consistent reporting, paving the way for performance optimization in flexible photovoltaics.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 19\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202422706\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202422706\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202422706","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

灵活的新兴光伏技术,如有机光伏和钙钛矿光伏,在帐篷、可穿戴电子产品和其他便携式应用中具有巨大的集成潜力。最近,Fukuda等人(2024)提出了一种弯曲测试方案,用于标准化柔性太阳能电池的机械性能表征,重点是1000次弯曲循环中1%的应变。这标志着朝着在文献中建立一致性和良好实践迈出了重要的一步。然而,即使采用这种统一的协议,在机械测试过程中,厚度、弯曲半径和功率转换效率(PCE)演变等参数的变化影响也阻碍了准确比较太阳能电池的机械灵活性。在此,引入了一个新的性能指标,即柔性光伏疲劳系数(F),它将PCE保持、应变和弯曲循环集成到一个内聚框架中。在详细的多层力学模型的指导下,该指标能够更准确地进行应变分析,并促进一致的报告,为柔性光伏电池的性能优化铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Flexible Photovoltaic Fatigue Factor for Quantification of Mechanical Device Performance

A Flexible Photovoltaic Fatigue Factor for Quantification of Mechanical Device Performance

A Flexible Photovoltaic Fatigue Factor for Quantification of Mechanical Device Performance

Flexible emerging photovoltaic technologies, such as organic and perovskite photovoltaics, hold great potential for integration into tents, wearable electronics, and other portable applications. Recently, Fukuda et al. (2024) propose a bending test protocol for standardizing the mechanical performance characterization of flexible solar cells, focusing on 1% strain over 1 000 bending cycles. This marked an important step toward establishing consistency and good practices in the literature. However, even with this unified protocol, accurately comparing the mechanical flexibility of solar cells is hindered by the variated influence of parameters like thickness, bending radius, and power conversion efficiency (PCE) evolution during mechanical testing. Herein, a new figure of merit is introduced, the flexible photovoltaic fatigue factor (F), which integrates PCE retention, strain, and bending cycles into a cohesive framework. Guided by a detailed multilayer mechanical model, this metric enables more accurate strain analysis and promotes consistent reporting, paving the way for performance optimization in flexible photovoltaics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信