基于血流的冠状动脉旁路移植术通畅指标:不确定性量化模拟以指导发展。

IF 1.6 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Sita Drost, Cornelis J Drost
{"title":"基于血流的冠状动脉旁路移植术通畅指标:不确定性量化模拟以指导发展。","authors":"Sita Drost, Cornelis J Drost","doi":"10.1007/s13239-024-00765-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Over time, transit time flow measurement (TTFM) has proven itself as a simple and effective tool for intra-operative evaluation of coronary artery bypass grafts (CABGs). However, metrics used to screen for possible technical error show considerable spread, preventing the definition of sharp cut-off values to distinguish between patent, questionable, and failed grafts. The simulation study presented in this paper aims to quantify this uncertainty for commonly used patency metrics, and to identify the most important physiological parameters influencing it.</p><p><strong>Methods: </strong>Uncertainty quantification was performed on a realistic multiscale numerical model of the coronary circulation, guided by Morris screening sensitivity analysis of a simpler, lumped-parameter model. Simulation results were qualitatively verified against results of a recent clinical study.</p><p><strong>Results: </strong>Correspondence with clinical study data is reasonable, especially considering that the model was not fitted in any way. Stenosis severity was confirmed to be an influential parameter. However, also cardiac period and graft diameter were observed to be important, particularly for mean flow rate and pulsatility index.</p><p><strong>Conclusion: </strong>Metrics quantifying the flow waveform's diastolic dominance show the highest sensitivity to graft stenosis, and seem to be least affected by autoregulation. Among these, the novel diastolic resistance index shows the strongest sensitivity to stenosis severity.</p><p><strong>Significance: </strong>The approach used in this study is expected to benefit the development of improved patency metrics, by allowing medical engineers to include sensitivity and uncertainty in assessing, in-silico, the potential of novel metrics, thus enabling them to provide better guidance in the design of clinical studies.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow-Based Coronary Artery Bypass Graft Patency Metrics: Uncertainty Quantification Simulations to Guide Development.\",\"authors\":\"Sita Drost, Cornelis J Drost\",\"doi\":\"10.1007/s13239-024-00765-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Over time, transit time flow measurement (TTFM) has proven itself as a simple and effective tool for intra-operative evaluation of coronary artery bypass grafts (CABGs). However, metrics used to screen for possible technical error show considerable spread, preventing the definition of sharp cut-off values to distinguish between patent, questionable, and failed grafts. The simulation study presented in this paper aims to quantify this uncertainty for commonly used patency metrics, and to identify the most important physiological parameters influencing it.</p><p><strong>Methods: </strong>Uncertainty quantification was performed on a realistic multiscale numerical model of the coronary circulation, guided by Morris screening sensitivity analysis of a simpler, lumped-parameter model. Simulation results were qualitatively verified against results of a recent clinical study.</p><p><strong>Results: </strong>Correspondence with clinical study data is reasonable, especially considering that the model was not fitted in any way. Stenosis severity was confirmed to be an influential parameter. However, also cardiac period and graft diameter were observed to be important, particularly for mean flow rate and pulsatility index.</p><p><strong>Conclusion: </strong>Metrics quantifying the flow waveform's diastolic dominance show the highest sensitivity to graft stenosis, and seem to be least affected by autoregulation. Among these, the novel diastolic resistance index shows the strongest sensitivity to stenosis severity.</p><p><strong>Significance: </strong>The approach used in this study is expected to benefit the development of improved patency metrics, by allowing medical engineers to include sensitivity and uncertainty in assessing, in-silico, the potential of novel metrics, thus enabling them to provide better guidance in the design of clinical studies.</p>\",\"PeriodicalId\":54322,\"journal\":{\"name\":\"Cardiovascular Engineering and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13239-024-00765-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-024-00765-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:随着时间的推移,过境时间流量测量(TTFM)已被证明是冠状动脉旁路移植术(cabg)术中评估的一种简单有效的工具。然而,用于筛选可能的技术错误的指标显示出相当大的广泛性,从而无法定义明确的临界值来区分专利、可疑和失败的移植物。本文的模拟研究旨在量化常用的通畅指标的这种不确定性,并确定影响它的最重要的生理参数。方法:在Morris筛选敏感性分析的指导下,对冠状动脉循环的真实多尺度数值模型进行不确定性量化。模拟结果与最近的临床研究结果进行了定性验证。结果:与临床研究数据的对应是合理的,特别是考虑到模型没有以任何方式拟合。狭窄程度被证实是一个有影响的参数。然而,心脏周期和移植物直径也很重要,特别是对平均流速和脉搏指数。结论:量化舒张期血流波形优势的指标对移植物狭窄的敏感性最高,并且似乎受自调节的影响最小。其中,新型舒张阻力指数对狭窄程度的敏感性最强。意义:本研究中使用的方法有望通过允许医学工程师在计算机上评估新指标的潜力时包括敏感性和不确定性,从而使他们能够在临床研究设计中提供更好的指导,从而有利于改善通畅指标的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow-Based Coronary Artery Bypass Graft Patency Metrics: Uncertainty Quantification Simulations to Guide Development.

Purpose: Over time, transit time flow measurement (TTFM) has proven itself as a simple and effective tool for intra-operative evaluation of coronary artery bypass grafts (CABGs). However, metrics used to screen for possible technical error show considerable spread, preventing the definition of sharp cut-off values to distinguish between patent, questionable, and failed grafts. The simulation study presented in this paper aims to quantify this uncertainty for commonly used patency metrics, and to identify the most important physiological parameters influencing it.

Methods: Uncertainty quantification was performed on a realistic multiscale numerical model of the coronary circulation, guided by Morris screening sensitivity analysis of a simpler, lumped-parameter model. Simulation results were qualitatively verified against results of a recent clinical study.

Results: Correspondence with clinical study data is reasonable, especially considering that the model was not fitted in any way. Stenosis severity was confirmed to be an influential parameter. However, also cardiac period and graft diameter were observed to be important, particularly for mean flow rate and pulsatility index.

Conclusion: Metrics quantifying the flow waveform's diastolic dominance show the highest sensitivity to graft stenosis, and seem to be least affected by autoregulation. Among these, the novel diastolic resistance index shows the strongest sensitivity to stenosis severity.

Significance: The approach used in this study is expected to benefit the development of improved patency metrics, by allowing medical engineers to include sensitivity and uncertainty in assessing, in-silico, the potential of novel metrics, thus enabling them to provide better guidance in the design of clinical studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cardiovascular Engineering and Technology
Cardiovascular Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.00
自引率
0.00%
发文量
51
期刊介绍: Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信