Dongsheng Cui, Jing Wang, Ranfeng Qiu, Hongxin Shi, Lipeng Yan
{"title":"Ni辅助衬垫铝/铜电阻焊接头的组织与性能","authors":"Dongsheng Cui, Jing Wang, Ranfeng Qiu, Hongxin Shi, Lipeng Yan","doi":"10.1038/s41598-025-85124-w","DOIUrl":null,"url":null,"abstract":"<p><p>A rivet of aluminum and auxiliary gasket of nickel were adopted to weld A1060 aluminum plate and T2 copper plate using resistance element welding. The interfacial microstructure was analyzed and the tensile shear load of the joint was tested. A layer of Al<sub>2</sub>Cu and the eutectic structure of Al<sub>2</sub>Cu and (Al) were formed in the interfacial zone of Al/Cu. The grains in Al<sub>2</sub>Cu layer exhibit random crystal orientations. With the increase of welding current and the extension of welding time, the tensile shear load of the Al/Cu joint increased first and then decreased. When the welding current was 30 kA, the welding time was 400 ms, the tensile shear load of the joint reached the maximum, approximately 2.55 kN. The results reveal that the application of nickel auxiliary gasket in the resistance element welding of Al/Cu can promote the joining between the rivet shank and the upper plate and increase the tensile shear load of the joint.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"822"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and properties of joint of Al/Cu welded by resistance element welding with an auxiliary gasket of Ni.\",\"authors\":\"Dongsheng Cui, Jing Wang, Ranfeng Qiu, Hongxin Shi, Lipeng Yan\",\"doi\":\"10.1038/s41598-025-85124-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A rivet of aluminum and auxiliary gasket of nickel were adopted to weld A1060 aluminum plate and T2 copper plate using resistance element welding. The interfacial microstructure was analyzed and the tensile shear load of the joint was tested. A layer of Al<sub>2</sub>Cu and the eutectic structure of Al<sub>2</sub>Cu and (Al) were formed in the interfacial zone of Al/Cu. The grains in Al<sub>2</sub>Cu layer exhibit random crystal orientations. With the increase of welding current and the extension of welding time, the tensile shear load of the Al/Cu joint increased first and then decreased. When the welding current was 30 kA, the welding time was 400 ms, the tensile shear load of the joint reached the maximum, approximately 2.55 kN. The results reveal that the application of nickel auxiliary gasket in the resistance element welding of Al/Cu can promote the joining between the rivet shank and the upper plate and increase the tensile shear load of the joint.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"822\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-85124-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85124-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Microstructure and properties of joint of Al/Cu welded by resistance element welding with an auxiliary gasket of Ni.
A rivet of aluminum and auxiliary gasket of nickel were adopted to weld A1060 aluminum plate and T2 copper plate using resistance element welding. The interfacial microstructure was analyzed and the tensile shear load of the joint was tested. A layer of Al2Cu and the eutectic structure of Al2Cu and (Al) were formed in the interfacial zone of Al/Cu. The grains in Al2Cu layer exhibit random crystal orientations. With the increase of welding current and the extension of welding time, the tensile shear load of the Al/Cu joint increased first and then decreased. When the welding current was 30 kA, the welding time was 400 ms, the tensile shear load of the joint reached the maximum, approximately 2.55 kN. The results reveal that the application of nickel auxiliary gasket in the resistance element welding of Al/Cu can promote the joining between the rivet shank and the upper plate and increase the tensile shear load of the joint.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.