基于机器学习的非对比特征跟踪应变分析和T1/T2映射的解释,用于评估心肌活力。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Amir GhaffariJolfayi, Alireza Salmanipour, Kiyan Heshmat-Ghahdarijani, MohammadHossein MozafaryBazargany, Amir Azimi, Pirouz Pirouzi, Ali Mohammadzadeh
{"title":"基于机器学习的非对比特征跟踪应变分析和T1/T2映射的解释,用于评估心肌活力。","authors":"Amir GhaffariJolfayi, Alireza Salmanipour, Kiyan Heshmat-Ghahdarijani, MohammadHossein MozafaryBazargany, Amir Azimi, Pirouz Pirouzi, Ali Mohammadzadeh","doi":"10.1038/s41598-024-85029-0","DOIUrl":null,"url":null,"abstract":"<p><p>Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment. A retrospective analysis was conducted on 79 patients with myocardial infarction (MI) 2-4 weeks post-event. Patients with prior ischemia or poor imaging quality were excluded to ensure robust data acquisition. Various ML algorithms were applied to data from LGE-CMR and non-contrast CMR techniques. Random forest (RF) demonstrated the highest predictive accuracy, with area under the curve (AUC) values of 0.89, 0.90, and 0.92 for left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX) coronary artery territories, respectively. For the LAD territory, RF, k-nearest neighbors (KNN), and logistic regression were the top performers, while RCA showed the best results from RF, neural networks (NN), and KNN. In the LCX territory, RF, NN, and logistic regression were most effective. The integration of T1/T2 mapping and strain analysis significantly enhanced myocardial viability prediction, positioning these non-contrast techniques as promising alternatives to LGE-CMR. ML models, particularly RF, provided superior diagnostic accuracy across coronary territories. Future studies should validate these findings across diverse populations and clinical settings.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"753"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700106/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based interpretation of non-contrast feature tracking strain analysis and T1/T2 mapping for assessing myocardial viability.\",\"authors\":\"Amir GhaffariJolfayi, Alireza Salmanipour, Kiyan Heshmat-Ghahdarijani, MohammadHossein MozafaryBazargany, Amir Azimi, Pirouz Pirouzi, Ali Mohammadzadeh\",\"doi\":\"10.1038/s41598-024-85029-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment. A retrospective analysis was conducted on 79 patients with myocardial infarction (MI) 2-4 weeks post-event. Patients with prior ischemia or poor imaging quality were excluded to ensure robust data acquisition. Various ML algorithms were applied to data from LGE-CMR and non-contrast CMR techniques. Random forest (RF) demonstrated the highest predictive accuracy, with area under the curve (AUC) values of 0.89, 0.90, and 0.92 for left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX) coronary artery territories, respectively. For the LAD territory, RF, k-nearest neighbors (KNN), and logistic regression were the top performers, while RCA showed the best results from RF, neural networks (NN), and KNN. In the LCX territory, RF, NN, and logistic regression were most effective. The integration of T1/T2 mapping and strain analysis significantly enhanced myocardial viability prediction, positioning these non-contrast techniques as promising alternatives to LGE-CMR. ML models, particularly RF, provided superior diagnostic accuracy across coronary territories. Future studies should validate these findings across diverse populations and clinical settings.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"753\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700106/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-85029-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-85029-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

评估心肌活力是管理缺血性心脏病的关键。虽然晚期钆增强(LGE)心血管磁共振(CMR)是生存能力评估的金标准,但它也有局限性,包括肾功能不全患者的禁忌症和扫描时间过长。本研究探讨了非对比CMR技术(特征跟踪应变分析和T1/T2映射)与机器学习(ML)模型相结合的潜力,作为LGE-CMR心肌活力评估的替代方案。回顾性分析79例心肌梗死(MI)后2 ~ 4周的病例。排除先前有缺血或成像质量差的患者,以确保可靠的数据采集。不同的ML算法应用于来自large -CMR和非对比CMR技术的数据。随机森林(RF)显示出最高的预测精度,对于左前降支(LAD)、右冠状动脉(RCA)和左旋冠状动脉(LCX)区域,曲线下面积(AUC)分别为0.89、0.90和0.92。对于LAD领域,RF、k近邻(KNN)和逻辑回归是表现最好的,而RCA在RF、神经网络(NN)和KNN方面表现最好。在LCX区域,射频、神经网络和逻辑回归是最有效的。T1/T2制图和应变分析的整合显着增强了心肌活力预测,将这些非对比技术定位为LGE-CMR的有希望的替代品。ML模型,特别是RF模型,在冠状动脉区域提供了卓越的诊断准确性。未来的研究应该在不同的人群和临床环境中验证这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning-based interpretation of non-contrast feature tracking strain analysis and T1/T2 mapping for assessing myocardial viability.

Machine learning-based interpretation of non-contrast feature tracking strain analysis and T1/T2 mapping for assessing myocardial viability.

Machine learning-based interpretation of non-contrast feature tracking strain analysis and T1/T2 mapping for assessing myocardial viability.

Machine learning-based interpretation of non-contrast feature tracking strain analysis and T1/T2 mapping for assessing myocardial viability.

Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment. A retrospective analysis was conducted on 79 patients with myocardial infarction (MI) 2-4 weeks post-event. Patients with prior ischemia or poor imaging quality were excluded to ensure robust data acquisition. Various ML algorithms were applied to data from LGE-CMR and non-contrast CMR techniques. Random forest (RF) demonstrated the highest predictive accuracy, with area under the curve (AUC) values of 0.89, 0.90, and 0.92 for left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX) coronary artery territories, respectively. For the LAD territory, RF, k-nearest neighbors (KNN), and logistic regression were the top performers, while RCA showed the best results from RF, neural networks (NN), and KNN. In the LCX territory, RF, NN, and logistic regression were most effective. The integration of T1/T2 mapping and strain analysis significantly enhanced myocardial viability prediction, positioning these non-contrast techniques as promising alternatives to LGE-CMR. ML models, particularly RF, provided superior diagnostic accuracy across coronary territories. Future studies should validate these findings across diverse populations and clinical settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信