Shuang Liang , Miaomiao Yang , Linlin Zhang , Xufeng Fang , Xian Zhang , Chunhua Wei , Zuyun Dai , Zhongzhou Yang , Chaonan Wang , Bin Liu , Feishi Luan , Shi Liu
{"title":"西瓜条纹色关键候选基因ClAPRR2的鉴定与特性研究","authors":"Shuang Liang , Miaomiao Yang , Linlin Zhang , Xufeng Fang , Xian Zhang , Chunhua Wei , Zuyun Dai , Zhongzhou Yang , Chaonan Wang , Bin Liu , Feishi Luan , Shi Liu","doi":"10.1016/j.plantsci.2024.112383","DOIUrl":null,"url":null,"abstract":"<div><div>The stripe color of watermelon is a vital commercial trait and is the focus of attention of consumers and researchers. However, the genetic determinants of watermelon stripe color are incompletely understood. Based on the results of preliminary localization studies, we constructed a large-capacity F<sub>2</sub> generation population (710 plants) using light-green striped ZXG1555 and green-striped Cream of Saskatchewan (COS) watermelon strains as parental lines for fine mapping. Genes controlling stripe color were located in an 85.284 kb region on chromosome 9, which contained five candidate genes. Combined with parental phenotypes, chlorophyll contents of rinds and stripes were assayed. Gene sequence alignment and transcriptional level analysis of parental lines predicted <em>Cla97C09G175170</em> (encoding a two-component response regulator-like protein, <em>APRR2</em>) as the best candidate gene for stripe color trait. Two SNPs in the <em>ClAPRR2</em> coding region caused amino acid substitutions, but were not located in the conserved domain, while a 12 bp insertion caused premature translation termination and a 35 amino acid deletion in the conserved domain and may have affected <em>ClAPRR2</em> function in ZXG1555. Subcellular localization analysis showed that <em>ClAPRR2</em> was expressed in the ZXG1555 cell membrane but was located in the nucleus and cell membrane of COS. Nucleotide polymorphisms and deletions were also detected in the promoter region between parental lines and caused cis-acting element variations. Luciferase activity suggested that promoter variations may not be the main factor in the regulation of <em>ClAPRR2</em> expression.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"352 ","pages":"Article 112383"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and characterization of ClAPRR2, a key candidate gene controlling watermelon stripe color\",\"authors\":\"Shuang Liang , Miaomiao Yang , Linlin Zhang , Xufeng Fang , Xian Zhang , Chunhua Wei , Zuyun Dai , Zhongzhou Yang , Chaonan Wang , Bin Liu , Feishi Luan , Shi Liu\",\"doi\":\"10.1016/j.plantsci.2024.112383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The stripe color of watermelon is a vital commercial trait and is the focus of attention of consumers and researchers. However, the genetic determinants of watermelon stripe color are incompletely understood. Based on the results of preliminary localization studies, we constructed a large-capacity F<sub>2</sub> generation population (710 plants) using light-green striped ZXG1555 and green-striped Cream of Saskatchewan (COS) watermelon strains as parental lines for fine mapping. Genes controlling stripe color were located in an 85.284 kb region on chromosome 9, which contained five candidate genes. Combined with parental phenotypes, chlorophyll contents of rinds and stripes were assayed. Gene sequence alignment and transcriptional level analysis of parental lines predicted <em>Cla97C09G175170</em> (encoding a two-component response regulator-like protein, <em>APRR2</em>) as the best candidate gene for stripe color trait. Two SNPs in the <em>ClAPRR2</em> coding region caused amino acid substitutions, but were not located in the conserved domain, while a 12 bp insertion caused premature translation termination and a 35 amino acid deletion in the conserved domain and may have affected <em>ClAPRR2</em> function in ZXG1555. Subcellular localization analysis showed that <em>ClAPRR2</em> was expressed in the ZXG1555 cell membrane but was located in the nucleus and cell membrane of COS. Nucleotide polymorphisms and deletions were also detected in the promoter region between parental lines and caused cis-acting element variations. Luciferase activity suggested that promoter variations may not be the main factor in the regulation of <em>ClAPRR2</em> expression.</div></div>\",\"PeriodicalId\":20273,\"journal\":{\"name\":\"Plant Science\",\"volume\":\"352 \",\"pages\":\"Article 112383\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168945224004102\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945224004102","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Identification and characterization of ClAPRR2, a key candidate gene controlling watermelon stripe color
The stripe color of watermelon is a vital commercial trait and is the focus of attention of consumers and researchers. However, the genetic determinants of watermelon stripe color are incompletely understood. Based on the results of preliminary localization studies, we constructed a large-capacity F2 generation population (710 plants) using light-green striped ZXG1555 and green-striped Cream of Saskatchewan (COS) watermelon strains as parental lines for fine mapping. Genes controlling stripe color were located in an 85.284 kb region on chromosome 9, which contained five candidate genes. Combined with parental phenotypes, chlorophyll contents of rinds and stripes were assayed. Gene sequence alignment and transcriptional level analysis of parental lines predicted Cla97C09G175170 (encoding a two-component response regulator-like protein, APRR2) as the best candidate gene for stripe color trait. Two SNPs in the ClAPRR2 coding region caused amino acid substitutions, but were not located in the conserved domain, while a 12 bp insertion caused premature translation termination and a 35 amino acid deletion in the conserved domain and may have affected ClAPRR2 function in ZXG1555. Subcellular localization analysis showed that ClAPRR2 was expressed in the ZXG1555 cell membrane but was located in the nucleus and cell membrane of COS. Nucleotide polymorphisms and deletions were also detected in the promoter region between parental lines and caused cis-acting element variations. Luciferase activity suggested that promoter variations may not be the main factor in the regulation of ClAPRR2 expression.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.