绿色合成氧化钴纳米颗粒的生物合成及其健康促进特性。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Raghda Moawad, Yasmine Abdallah, Mohamed Mohany, Salim S Al-Rejaie, Sinisa Djurasevic, Mohamed Fawzy Ramadan, Ahmed Bakr Mousa
{"title":"绿色合成氧化钴纳米颗粒的生物合成及其健康促进特性。","authors":"Raghda Moawad, Yasmine Abdallah, Mohamed Mohany, Salim S Al-Rejaie, Sinisa Djurasevic, Mohamed Fawzy Ramadan, Ahmed Bakr Mousa","doi":"10.1038/s41598-024-82679-y","DOIUrl":null,"url":null,"abstract":"<p><p>Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD). In vitro traits of green-synthesized CoOnps were studied on ovarian cancer cells (SKOV3) using a Sulforhodamine B (SRB) method. The cytotoxic effect and IC50 were estimated. Moreover, concentrations of 10, 30, 40, 70, 100, 200, 300, 400 and 500 μg/mL CoOnps were applied to investigate their antimicrobial effect against Listeria, Staphylococcus aureus and Streptococcus as gram +ve pathogenic bacteria, Bifidobacterium bifidum 2203, Bifidobacterium bifidum LMG 10,645, Bifidobacterium breve LMC 017, Bifidobacterium angulatum 2238 and Bifidobacterium longum ATCC 15,707 as probiotics, E. coli as gram -ve bacterial model and yeast strain Candida albicans. CoOnps showed anti-ovarian cancer effects at 24.02 μg/mL. Furthermore, it exerted antimicrobial activity versus Listeria, Streptococcus, S. aureus, and E. coli were 31.66 ± 0.88, 24.33 ± 2.08, 25.66 ± 0.33, and 33.00 ± 6.08; however, they did not suppress the growth of Candida albicans and all tested Bifidobacterial strains up to concentrations of 500 μg/mL with significant difference compared to all concentrations p < 0.05. Green synthesis of CoOnps is a low-cost, eco-friendly and easily prepared method. Its impressive features as cytotoxic SKOV3, a cell line ovarian cancer and antibacterial effect for some gram +ve and -ve bacteria, besides maintaining probiotics, could candidate them as competitive agents for medical, pharmacological, agricultural and food applications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"727"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698730/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biosynthesis and health promoting traits of green synthesized cobalt oxide nanoparticles.\",\"authors\":\"Raghda Moawad, Yasmine Abdallah, Mohamed Mohany, Salim S Al-Rejaie, Sinisa Djurasevic, Mohamed Fawzy Ramadan, Ahmed Bakr Mousa\",\"doi\":\"10.1038/s41598-024-82679-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD). In vitro traits of green-synthesized CoOnps were studied on ovarian cancer cells (SKOV3) using a Sulforhodamine B (SRB) method. The cytotoxic effect and IC50 were estimated. Moreover, concentrations of 10, 30, 40, 70, 100, 200, 300, 400 and 500 μg/mL CoOnps were applied to investigate their antimicrobial effect against Listeria, Staphylococcus aureus and Streptococcus as gram +ve pathogenic bacteria, Bifidobacterium bifidum 2203, Bifidobacterium bifidum LMG 10,645, Bifidobacterium breve LMC 017, Bifidobacterium angulatum 2238 and Bifidobacterium longum ATCC 15,707 as probiotics, E. coli as gram -ve bacterial model and yeast strain Candida albicans. CoOnps showed anti-ovarian cancer effects at 24.02 μg/mL. Furthermore, it exerted antimicrobial activity versus Listeria, Streptococcus, S. aureus, and E. coli were 31.66 ± 0.88, 24.33 ± 2.08, 25.66 ± 0.33, and 33.00 ± 6.08; however, they did not suppress the growth of Candida albicans and all tested Bifidobacterial strains up to concentrations of 500 μg/mL with significant difference compared to all concentrations p < 0.05. Green synthesis of CoOnps is a low-cost, eco-friendly and easily prepared method. Its impressive features as cytotoxic SKOV3, a cell line ovarian cancer and antibacterial effect for some gram +ve and -ve bacteria, besides maintaining probiotics, could candidate them as competitive agents for medical, pharmacological, agricultural and food applications.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"727\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698730/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-82679-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82679-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

纳米医学应用显著增加。本研究的目的是制备和表征氧化钴纳米颗粒(CoOnps),并评估其细胞毒性和抗菌作用。采用紫外可见分光光度计(UV-Vis)、扫描电镜(SEM)、透射电镜(TEM)、能量色散x射线分析(EDAX)、傅里叶变换红外、FTIR和x射线衍射(XRD)对绿色合成的CoOnps进行了分析。采用磺胺B (Sulforhodamine B, SRB)法研究了绿色合成的CoOnps在卵巢癌细胞(SKOV3)上的体外性状。估计细胞毒作用和IC50。采用浓度为10、30、40、70、100、200、300、400和500 μg/mL的CoOnps分别对致病菌李斯特菌、金黄色葡萄球菌和链球菌、益生菌双歧杆菌2203、双歧杆菌LMG 10645、短双歧杆菌LMC 017、角双歧杆菌2238和长双歧杆菌ATCC 15707、模型细菌大肠杆菌和酵母菌白色念珠菌的抑菌效果进行了研究。CoOnps浓度为24.02 μg/mL,具有抗卵巢癌作用。对李斯特菌、链球菌、金黄色葡萄球菌和大肠杆菌的抑菌活性分别为31.66±0.88、24.33±2.08、25.66±0.33和33.00±6.08;然而,当浓度达到500 μg/mL时,它们对白色念珠菌和所有被测双歧杆菌菌株的生长没有抑制作用,与所有浓度相比差异显著p
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biosynthesis and health promoting traits of green synthesized cobalt oxide nanoparticles.

Biosynthesis and health promoting traits of green synthesized cobalt oxide nanoparticles.

Biosynthesis and health promoting traits of green synthesized cobalt oxide nanoparticles.

Biosynthesis and health promoting traits of green synthesized cobalt oxide nanoparticles.

Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD). In vitro traits of green-synthesized CoOnps were studied on ovarian cancer cells (SKOV3) using a Sulforhodamine B (SRB) method. The cytotoxic effect and IC50 were estimated. Moreover, concentrations of 10, 30, 40, 70, 100, 200, 300, 400 and 500 μg/mL CoOnps were applied to investigate their antimicrobial effect against Listeria, Staphylococcus aureus and Streptococcus as gram +ve pathogenic bacteria, Bifidobacterium bifidum 2203, Bifidobacterium bifidum LMG 10,645, Bifidobacterium breve LMC 017, Bifidobacterium angulatum 2238 and Bifidobacterium longum ATCC 15,707 as probiotics, E. coli as gram -ve bacterial model and yeast strain Candida albicans. CoOnps showed anti-ovarian cancer effects at 24.02 μg/mL. Furthermore, it exerted antimicrobial activity versus Listeria, Streptococcus, S. aureus, and E. coli were 31.66 ± 0.88, 24.33 ± 2.08, 25.66 ± 0.33, and 33.00 ± 6.08; however, they did not suppress the growth of Candida albicans and all tested Bifidobacterial strains up to concentrations of 500 μg/mL with significant difference compared to all concentrations p < 0.05. Green synthesis of CoOnps is a low-cost, eco-friendly and easily prepared method. Its impressive features as cytotoxic SKOV3, a cell line ovarian cancer and antibacterial effect for some gram +ve and -ve bacteria, besides maintaining probiotics, could candidate them as competitive agents for medical, pharmacological, agricultural and food applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信