Ryan Morse, Gabriella A M Ten Have, John J Thaden, Marielle P K J Engelen, Sarah Rice, Martin Hagve, Nicolaas E P Deutz
{"title":"在铜绿假单胞菌诱导的母猪脓毒症模型中,脂肪和肌肉组织分解对器官间能量底物通量的作用。","authors":"Ryan Morse, Gabriella A M Ten Have, John J Thaden, Marielle P K J Engelen, Sarah Rice, Martin Hagve, Nicolaas E P Deutz","doi":"10.14814/phy2.70129","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis leads to an acute breakdown of muscle to support increased caloric and amino acid requirements. Little is known about the role of adipose and muscle tissue breakdown and intestinal metabolism in glucose substrate supply during the acute phase of sepsis. In a translational porcine model of sepsis, we explored the across organ net fluxes of gluconeogenic substrates. In 13 pigs, acute sepsis was induced by IV infusion of Pseudomonas aeruginosa, while in 9 pigs saline (control) was given for 18 h. Blood samples were collected between 12 and 18 h and analyzed with HPLC and LCMS. In sepsis, glucose plasma concentration was reduced (p = 0.0028). A concordant increase in splanchnic area net release of glucose (p = 0.0049), due to reduced uptake in the portal drained viscera (PDV) (p = 0.0032) with an unchanged liver production (p = 0.7861). The hindquarter showed a higher release of alanine (p = 0.0002), glutamine (p = 0.003), and lactate (p = 0.0007), but not for glycerol (p = 0.5718). Diminished PDV uptake of gluconeogenic amino acids, increased liver uptake of these substrates (p < 0.05), while no change in liver glycerol uptake (p = 0.3170), did not lead to an increased net liver glucose release. In the acute phase of sepsis, we hypothesize an important role of altered intestinal amino acid metabolism and breakdown of muscle proteins, but not of glycolysis to support gluconeogenesis.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 1","pages":"e70129"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of adipose and muscle tissue breakdown on interorgan energy substrate fluxes in a Pseudomonas aeruginosa induced sepsis model in female pigs.\",\"authors\":\"Ryan Morse, Gabriella A M Ten Have, John J Thaden, Marielle P K J Engelen, Sarah Rice, Martin Hagve, Nicolaas E P Deutz\",\"doi\":\"10.14814/phy2.70129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sepsis leads to an acute breakdown of muscle to support increased caloric and amino acid requirements. Little is known about the role of adipose and muscle tissue breakdown and intestinal metabolism in glucose substrate supply during the acute phase of sepsis. In a translational porcine model of sepsis, we explored the across organ net fluxes of gluconeogenic substrates. In 13 pigs, acute sepsis was induced by IV infusion of Pseudomonas aeruginosa, while in 9 pigs saline (control) was given for 18 h. Blood samples were collected between 12 and 18 h and analyzed with HPLC and LCMS. In sepsis, glucose plasma concentration was reduced (p = 0.0028). A concordant increase in splanchnic area net release of glucose (p = 0.0049), due to reduced uptake in the portal drained viscera (PDV) (p = 0.0032) with an unchanged liver production (p = 0.7861). The hindquarter showed a higher release of alanine (p = 0.0002), glutamine (p = 0.003), and lactate (p = 0.0007), but not for glycerol (p = 0.5718). Diminished PDV uptake of gluconeogenic amino acids, increased liver uptake of these substrates (p < 0.05), while no change in liver glycerol uptake (p = 0.3170), did not lead to an increased net liver glucose release. In the acute phase of sepsis, we hypothesize an important role of altered intestinal amino acid metabolism and breakdown of muscle proteins, but not of glycolysis to support gluconeogenesis.</p>\",\"PeriodicalId\":20083,\"journal\":{\"name\":\"Physiological Reports\",\"volume\":\"13 1\",\"pages\":\"e70129\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14814/phy2.70129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
The role of adipose and muscle tissue breakdown on interorgan energy substrate fluxes in a Pseudomonas aeruginosa induced sepsis model in female pigs.
Sepsis leads to an acute breakdown of muscle to support increased caloric and amino acid requirements. Little is known about the role of adipose and muscle tissue breakdown and intestinal metabolism in glucose substrate supply during the acute phase of sepsis. In a translational porcine model of sepsis, we explored the across organ net fluxes of gluconeogenic substrates. In 13 pigs, acute sepsis was induced by IV infusion of Pseudomonas aeruginosa, while in 9 pigs saline (control) was given for 18 h. Blood samples were collected between 12 and 18 h and analyzed with HPLC and LCMS. In sepsis, glucose plasma concentration was reduced (p = 0.0028). A concordant increase in splanchnic area net release of glucose (p = 0.0049), due to reduced uptake in the portal drained viscera (PDV) (p = 0.0032) with an unchanged liver production (p = 0.7861). The hindquarter showed a higher release of alanine (p = 0.0002), glutamine (p = 0.003), and lactate (p = 0.0007), but not for glycerol (p = 0.5718). Diminished PDV uptake of gluconeogenic amino acids, increased liver uptake of these substrates (p < 0.05), while no change in liver glycerol uptake (p = 0.3170), did not lead to an increased net liver glucose release. In the acute phase of sepsis, we hypothesize an important role of altered intestinal amino acid metabolism and breakdown of muscle proteins, but not of glycolysis to support gluconeogenesis.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.