Mervat G Hassan, Gharieb S El-Sayyad, Mohamed O Abdel-Monem, Mohamed N Malash, Mona A Kishk, Mohamed E El Awady, Mohamed I El-Khonezy
{"title":"揭示链霉菌菌株5m产生的l -谷氨酰胺酶作为抗肿瘤活性的结果。","authors":"Mervat G Hassan, Gharieb S El-Sayyad, Mohamed O Abdel-Monem, Mohamed N Malash, Mona A Kishk, Mohamed E El Awady, Mohamed I El-Khonezy","doi":"10.1186/s12934-024-02606-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Actinomycetes are a well-known example of a microbiological origin that may generate a wide variety of chemical structures. As excellent cell factories, these sources are able to manufacture medicines, agrochemicals, and enzymes that are crucial.</p><p><strong>Results: </strong>In this study, about 34 randomly selected Streptomyces isolates were discovered in soil, sediment, sea water, and other environments. Using a qualitative fast plate assay, they were tested for L-glutaminase production, and nine of them produced a significant amount of pink L-glutamine. Streptomyces sp. strain 5 M was identified by examining the 16S rRNA gene in the promising strain G8. A pH of 7.5, an incubation temperature of 40 °C, and the use of glucose and peptone as the carbon and nitrogen sources, respectively, produced the highest quantities of L-glutaminase. The molecular weight of the isolated L-glutaminase was estimated to be 52 kDa using SDS-PAGE analysis. At pH 7.5 and Temp., 40 °C, the isolated enzyme exhibited its highest levels of stability and activity. The isolated enzyme's K<sub>m</sub> and V<sub>max</sub> values were 2.62 mM and 10.20 U/ml, respectively. Strong toxicity against HepG-2, HeLa, and MCF-7 was observed due to the anticancer properties of the isolated L-glutaminase.</p><p><strong>Conclusion: </strong>Our findings include the discovery of Streptomyces sp. strain 5 M, which yields a free L-glutaminase and maybe a possible applicant for extra pharmacological investigation as an antineoplastic drug.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"4"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699688/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unravelling the outcome of L-glutaminase produced by Streptomyces sp. strain 5 M as an anti-neoplasm activity.\",\"authors\":\"Mervat G Hassan, Gharieb S El-Sayyad, Mohamed O Abdel-Monem, Mohamed N Malash, Mona A Kishk, Mohamed E El Awady, Mohamed I El-Khonezy\",\"doi\":\"10.1186/s12934-024-02606-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Actinomycetes are a well-known example of a microbiological origin that may generate a wide variety of chemical structures. As excellent cell factories, these sources are able to manufacture medicines, agrochemicals, and enzymes that are crucial.</p><p><strong>Results: </strong>In this study, about 34 randomly selected Streptomyces isolates were discovered in soil, sediment, sea water, and other environments. Using a qualitative fast plate assay, they were tested for L-glutaminase production, and nine of them produced a significant amount of pink L-glutamine. Streptomyces sp. strain 5 M was identified by examining the 16S rRNA gene in the promising strain G8. A pH of 7.5, an incubation temperature of 40 °C, and the use of glucose and peptone as the carbon and nitrogen sources, respectively, produced the highest quantities of L-glutaminase. The molecular weight of the isolated L-glutaminase was estimated to be 52 kDa using SDS-PAGE analysis. At pH 7.5 and Temp., 40 °C, the isolated enzyme exhibited its highest levels of stability and activity. The isolated enzyme's K<sub>m</sub> and V<sub>max</sub> values were 2.62 mM and 10.20 U/ml, respectively. Strong toxicity against HepG-2, HeLa, and MCF-7 was observed due to the anticancer properties of the isolated L-glutaminase.</p><p><strong>Conclusion: </strong>Our findings include the discovery of Streptomyces sp. strain 5 M, which yields a free L-glutaminase and maybe a possible applicant for extra pharmacological investigation as an antineoplastic drug.</p>\",\"PeriodicalId\":18582,\"journal\":{\"name\":\"Microbial Cell Factories\",\"volume\":\"24 1\",\"pages\":\"4\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699688/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell Factories\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12934-024-02606-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02606-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Unravelling the outcome of L-glutaminase produced by Streptomyces sp. strain 5 M as an anti-neoplasm activity.
Background: Actinomycetes are a well-known example of a microbiological origin that may generate a wide variety of chemical structures. As excellent cell factories, these sources are able to manufacture medicines, agrochemicals, and enzymes that are crucial.
Results: In this study, about 34 randomly selected Streptomyces isolates were discovered in soil, sediment, sea water, and other environments. Using a qualitative fast plate assay, they were tested for L-glutaminase production, and nine of them produced a significant amount of pink L-glutamine. Streptomyces sp. strain 5 M was identified by examining the 16S rRNA gene in the promising strain G8. A pH of 7.5, an incubation temperature of 40 °C, and the use of glucose and peptone as the carbon and nitrogen sources, respectively, produced the highest quantities of L-glutaminase. The molecular weight of the isolated L-glutaminase was estimated to be 52 kDa using SDS-PAGE analysis. At pH 7.5 and Temp., 40 °C, the isolated enzyme exhibited its highest levels of stability and activity. The isolated enzyme's Km and Vmax values were 2.62 mM and 10.20 U/ml, respectively. Strong toxicity against HepG-2, HeLa, and MCF-7 was observed due to the anticancer properties of the isolated L-glutaminase.
Conclusion: Our findings include the discovery of Streptomyces sp. strain 5 M, which yields a free L-glutaminase and maybe a possible applicant for extra pharmacological investigation as an antineoplastic drug.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems