产铁载体蓝藻对提高缺铁条件下玉米植株铁吸收潜力的意义。

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mandees Bakr Brick, Mervat H Hussein, Amr M Mowafy, Ragaa A Hamouda, Amr M Ayyad, Dina A Refaay
{"title":"产铁载体蓝藻对提高缺铁条件下玉米植株铁吸收潜力的意义。","authors":"Mandees Bakr Brick, Mervat H Hussein, Amr M Mowafy, Ragaa A Hamouda, Amr M Ayyad, Dina A Refaay","doi":"10.1186/s12934-024-02618-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.</p><p><strong>Results: </strong>Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.67 ± 0.58%). Therefore, Synechococcus mundulus was chosen for the beneficiary study and the intended agricultural application. Siderophore-type identification tests proved that Synechococcus mundulus produced hydroxamate-type. The response surface approach was successful in optimizing the conditions of siderophore production in Synechococcus mundulus with actual values for maximum biomass (387.11 mg L<sup>- 1</sup>) and siderophore production (91.84%) higher than the predicted values. The proton nuclear magnetic resonance (<sup>1</sup>H NMR) analysis data and the Fourier transformer-infrared spectrum analysis (FT-IR) signify the hydroxamate nature of Synechococcus mundulus isolated siderophore. Zea mays seedlings' growth response in the hydroponic system was significantly stimulated in response to supplementation with Synechococcus mundulus siderophore in the absence of iron compared to plants grown without iron and the positive controls. Additionally, the contents of chlorophyll a, chlorophyll b, carotenoids, total carbohydrates, and total protein were all surpassed in siderophore-treated plants, which is expected due to the increased iron content.</p><p><strong>Conclusions: </strong>The results introduced in this study highlighted the significant potential of Synechococcus mundulus-derived siderophore in stimulating Zea mays physicochemical growth parameters and iron uptake. Findings of this study present novel visions of cyanobacteria producing siderophores as an ecofriendly alternative candidate to synthetic iron chelators and their role in plant stress management.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"3"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699649/pdf/","citationCount":"0","resultStr":"{\"title\":\"Significance of siderophore-producing cyanobacteria on enhancing iron uptake potentiality of maize plants grown under iron-deficiency.\",\"authors\":\"Mandees Bakr Brick, Mervat H Hussein, Amr M Mowafy, Ragaa A Hamouda, Amr M Ayyad, Dina A Refaay\",\"doi\":\"10.1186/s12934-024-02618-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.</p><p><strong>Results: </strong>Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.67 ± 0.58%). Therefore, Synechococcus mundulus was chosen for the beneficiary study and the intended agricultural application. Siderophore-type identification tests proved that Synechococcus mundulus produced hydroxamate-type. The response surface approach was successful in optimizing the conditions of siderophore production in Synechococcus mundulus with actual values for maximum biomass (387.11 mg L<sup>- 1</sup>) and siderophore production (91.84%) higher than the predicted values. The proton nuclear magnetic resonance (<sup>1</sup>H NMR) analysis data and the Fourier transformer-infrared spectrum analysis (FT-IR) signify the hydroxamate nature of Synechococcus mundulus isolated siderophore. Zea mays seedlings' growth response in the hydroponic system was significantly stimulated in response to supplementation with Synechococcus mundulus siderophore in the absence of iron compared to plants grown without iron and the positive controls. Additionally, the contents of chlorophyll a, chlorophyll b, carotenoids, total carbohydrates, and total protein were all surpassed in siderophore-treated plants, which is expected due to the increased iron content.</p><p><strong>Conclusions: </strong>The results introduced in this study highlighted the significant potential of Synechococcus mundulus-derived siderophore in stimulating Zea mays physicochemical growth parameters and iron uptake. Findings of this study present novel visions of cyanobacteria producing siderophores as an ecofriendly alternative candidate to synthetic iron chelators and their role in plant stress management.</p>\",\"PeriodicalId\":18582,\"journal\":{\"name\":\"Microbial Cell Factories\",\"volume\":\"24 1\",\"pages\":\"3\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699649/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell Factories\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12934-024-02618-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02618-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:在缺铁等环境胁迫条件下,蓝细菌产生的铁载体可以帮助植物缓解逆境,促进生长的生理生化过程。本研究的目的是筛选platarthrospira, Pseudanabaena limnetica, Nostoc carneum和Synechococcus mundulus产生铁载体的潜力,以选择最有希望的分离物,然后研究分离的铁载体在铁限制环境下促进玉米幼苗生长的潜力。结果:筛选实验数据显示,蒙聚球菌(Synechococcus mundulus)的铁载体产量最高(78±2%),而念珠菌(Nostoc carneum)的产量最低(24.67±0.58%)。因此,选择粘球菌作为受益人研究和预期的农业应用。铁载体型鉴定试验证明,普通聚球菌产生羟基酸盐型。响应面法优化了黏球菌产铁载体的条件,最大生物量(387.11 mg L- 1)和铁载体产量(91.84%)均高于预测值。质子核磁共振(1H NMR)分析数据和傅里叶变换红外光谱分析(FT-IR)表明,蒙聚球菌分离的铁粒具有羟酸盐性质。与不含铁和阳性对照相比,在不含铁的水培系统中,添加粘聚球菌的玉米幼苗的生长响应明显受到刺激。此外,叶绿素a、叶绿素b、类胡萝卜素、总碳水化合物和总蛋白质的含量都超过了铁载体处理的植株,这是由于铁含量的增加。结论:本研究的结果强调了粘珠球菌衍生的铁载体在刺激玉米理化生长参数和铁吸收方面的显著潜力。本研究的发现提出了蓝细菌产生铁载体作为合成铁螯合剂的生态友好替代品及其在植物胁迫管理中的作用的新愿景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Significance of siderophore-producing cyanobacteria on enhancing iron uptake potentiality of maize plants grown under iron-deficiency.

Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.

Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.67 ± 0.58%). Therefore, Synechococcus mundulus was chosen for the beneficiary study and the intended agricultural application. Siderophore-type identification tests proved that Synechococcus mundulus produced hydroxamate-type. The response surface approach was successful in optimizing the conditions of siderophore production in Synechococcus mundulus with actual values for maximum biomass (387.11 mg L- 1) and siderophore production (91.84%) higher than the predicted values. The proton nuclear magnetic resonance (1H NMR) analysis data and the Fourier transformer-infrared spectrum analysis (FT-IR) signify the hydroxamate nature of Synechococcus mundulus isolated siderophore. Zea mays seedlings' growth response in the hydroponic system was significantly stimulated in response to supplementation with Synechococcus mundulus siderophore in the absence of iron compared to plants grown without iron and the positive controls. Additionally, the contents of chlorophyll a, chlorophyll b, carotenoids, total carbohydrates, and total protein were all surpassed in siderophore-treated plants, which is expected due to the increased iron content.

Conclusions: The results introduced in this study highlighted the significant potential of Synechococcus mundulus-derived siderophore in stimulating Zea mays physicochemical growth parameters and iron uptake. Findings of this study present novel visions of cyanobacteria producing siderophores as an ecofriendly alternative candidate to synthetic iron chelators and their role in plant stress management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信