Runyang Feng , Shuangshuang Chen , Shichao Duan , Zhenyang Guo , Na Wu , Hangnan Hong , Zheyan Fang , Litao Wang , Yuxin Du , Lin Wu , Xin Zhong , Yiqing Hu , Zhentao Zhang , Mukaddas Abdurahman , Peng Li , Hua Li , Junbo Ge
{"title":"SIRT6通过内皮细胞的脱乳酰基化促进VEGFA分泌,从而促进血管生成。","authors":"Runyang Feng , Shuangshuang Chen , Shichao Duan , Zhenyang Guo , Na Wu , Hangnan Hong , Zheyan Fang , Litao Wang , Yuxin Du , Lin Wu , Xin Zhong , Yiqing Hu , Zhentao Zhang , Mukaddas Abdurahman , Peng Li , Hua Li , Junbo Ge","doi":"10.1016/j.yjmcc.2024.12.006","DOIUrl":null,"url":null,"abstract":"<div><div>Angiogenesis plays a pivotal role in ischemic cardiovascular disease, accompanied by epigenetic regulation during this process. Sirtuin 6 (SIRT6) has been implicated in the regulation of DNA repair, transcription and aging, with its deacetylase activity fully studied. However, the role of SIRT6 demyristoylase activity remains less clear, with even less attention given to its myristoylated substrates. In this study, we report that endothelial specific SIRT6 knockout attenuated angiogenesis in mice, while SIRT6 was observed to promote migration and tube formation in endothelial cell. Notably, we further determined that SIRT6 affects the intracellular VEGFA and global myristoylation level under hypoxia. Moreover, ALK14 (myristic acids analogue) treatment and SIRT6 knockdown results in a significant decrease in VEGFA secretion under hypoxia, implying the involvement of SIRT6 demyristoylase activity in angiogenesis. Mechanistically, CLICK IT assay verified that VEGFA is a myristoylated substrate of SIRT6. Further, overexpression of SIRT6 mutants (R65A, G60A and H133Y) results in profound differences in VEGFA secretion, indicating that SIRT6 promotes VEGFA secretion through demyristoylation but not deacetylation. Finally, overexpression of SIRT6 rescued the diminishment of endothelial migration, tube formation and sprouting caused by ALK14 treatment. Overall, our study demonstrates that SIRT6 regulates angiogenesis by demyristoylating VEGFA and increasing VEGFA secretion. Therefore, modulation of SIRT6 demyristoylase activity may represent a therapeutic strategy for ischemic cardiovascular disease.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"199 ","pages":"Pages 104-117"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SIRT6 promotes angiogenesis by enhancing VEGFA secretion via demyristoylation in endothelial cell\",\"authors\":\"Runyang Feng , Shuangshuang Chen , Shichao Duan , Zhenyang Guo , Na Wu , Hangnan Hong , Zheyan Fang , Litao Wang , Yuxin Du , Lin Wu , Xin Zhong , Yiqing Hu , Zhentao Zhang , Mukaddas Abdurahman , Peng Li , Hua Li , Junbo Ge\",\"doi\":\"10.1016/j.yjmcc.2024.12.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Angiogenesis plays a pivotal role in ischemic cardiovascular disease, accompanied by epigenetic regulation during this process. Sirtuin 6 (SIRT6) has been implicated in the regulation of DNA repair, transcription and aging, with its deacetylase activity fully studied. However, the role of SIRT6 demyristoylase activity remains less clear, with even less attention given to its myristoylated substrates. In this study, we report that endothelial specific SIRT6 knockout attenuated angiogenesis in mice, while SIRT6 was observed to promote migration and tube formation in endothelial cell. Notably, we further determined that SIRT6 affects the intracellular VEGFA and global myristoylation level under hypoxia. Moreover, ALK14 (myristic acids analogue) treatment and SIRT6 knockdown results in a significant decrease in VEGFA secretion under hypoxia, implying the involvement of SIRT6 demyristoylase activity in angiogenesis. Mechanistically, CLICK IT assay verified that VEGFA is a myristoylated substrate of SIRT6. Further, overexpression of SIRT6 mutants (R65A, G60A and H133Y) results in profound differences in VEGFA secretion, indicating that SIRT6 promotes VEGFA secretion through demyristoylation but not deacetylation. Finally, overexpression of SIRT6 rescued the diminishment of endothelial migration, tube formation and sprouting caused by ALK14 treatment. Overall, our study demonstrates that SIRT6 regulates angiogenesis by demyristoylating VEGFA and increasing VEGFA secretion. Therefore, modulation of SIRT6 demyristoylase activity may represent a therapeutic strategy for ischemic cardiovascular disease.</div></div>\",\"PeriodicalId\":16402,\"journal\":{\"name\":\"Journal of molecular and cellular cardiology\",\"volume\":\"199 \",\"pages\":\"Pages 104-117\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular and cellular cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022282824002116\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022282824002116","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
SIRT6 promotes angiogenesis by enhancing VEGFA secretion via demyristoylation in endothelial cell
Angiogenesis plays a pivotal role in ischemic cardiovascular disease, accompanied by epigenetic regulation during this process. Sirtuin 6 (SIRT6) has been implicated in the regulation of DNA repair, transcription and aging, with its deacetylase activity fully studied. However, the role of SIRT6 demyristoylase activity remains less clear, with even less attention given to its myristoylated substrates. In this study, we report that endothelial specific SIRT6 knockout attenuated angiogenesis in mice, while SIRT6 was observed to promote migration and tube formation in endothelial cell. Notably, we further determined that SIRT6 affects the intracellular VEGFA and global myristoylation level under hypoxia. Moreover, ALK14 (myristic acids analogue) treatment and SIRT6 knockdown results in a significant decrease in VEGFA secretion under hypoxia, implying the involvement of SIRT6 demyristoylase activity in angiogenesis. Mechanistically, CLICK IT assay verified that VEGFA is a myristoylated substrate of SIRT6. Further, overexpression of SIRT6 mutants (R65A, G60A and H133Y) results in profound differences in VEGFA secretion, indicating that SIRT6 promotes VEGFA secretion through demyristoylation but not deacetylation. Finally, overexpression of SIRT6 rescued the diminishment of endothelial migration, tube formation and sprouting caused by ALK14 treatment. Overall, our study demonstrates that SIRT6 regulates angiogenesis by demyristoylating VEGFA and increasing VEGFA secretion. Therefore, modulation of SIRT6 demyristoylase activity may represent a therapeutic strategy for ischemic cardiovascular disease.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.