抗疱疹tau通过cGAS-STING-TBK1通路在阿尔茨海默病中保存神经元。

IF 7.5 1区 生物学 Q1 CELL BIOLOGY
Cell reports Pub Date : 2025-01-28 Epub Date: 2025-01-02 DOI:10.1016/j.celrep.2024.115109
Vanesa R Hyde, Chaoming Zhou, Juan R Fernandez, Krishnashis Chatterjee, Pururav Ramakrishna, Amanda Lin, Gregory W Fisher, Orhan Tunç Çeliker, Jill Caldwell, Omer Bender, Peter Joseph Sauer, Jose Lugo-Martinez, Daniel Z Bar, Leonardo D'Aiuto, Or A Shemesh
{"title":"抗疱疹tau通过cGAS-STING-TBK1通路在阿尔茨海默病中保存神经元。","authors":"Vanesa R Hyde, Chaoming Zhou, Juan R Fernandez, Krishnashis Chatterjee, Pururav Ramakrishna, Amanda Lin, Gregory W Fisher, Orhan Tunç Çeliker, Jill Caldwell, Omer Bender, Peter Joseph Sauer, Jose Lugo-Martinez, Daniel Z Bar, Leonardo D'Aiuto, Or A Shemesh","doi":"10.1016/j.celrep.2024.115109","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) diagnosis relies on the presence of extracellular β-amyloid (Aβ) and intracellular hyperphosphorylated tau (p-tau). Emerging evidence suggests a potential link between AD pathologies and infectious agents, with herpes simplex virus 1 (HSV-1) being a leading candidate. Our investigation, using metagenomics, mass spectrometry, western blotting, and decrowding expansion pathology, detects HSV-1-associated proteins in human brain samples. Expression of the herpesvirus protein ICP27 increases with AD severity and strongly colocalizes with p-tau but not with Aβ. Modeling in human brain organoids shows that HSV-1 infection elevates tau phosphorylation. Notably, p-tau reduces ICP27 expression and markedly decreases post-infection neuronal death from 64% to 7%. This modeling prompts investigation into the cGAS-STING-TBK1 pathway products, nuclear factor (NF)-κB and IRF-3, which colocalizes with ICP27 and p-tau in AD. Furthermore, experimental activation of STING enhances tau phosphorylation, while TBK1 inhibition prevents it. Together, these findings suggest that tau phosphorylation acts as an innate immune response in AD, driven by cGAS-STING.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":" ","pages":"115109"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-herpetic tau preserves neurons via the cGAS-STING-TBK1 pathway in Alzheimer's disease.\",\"authors\":\"Vanesa R Hyde, Chaoming Zhou, Juan R Fernandez, Krishnashis Chatterjee, Pururav Ramakrishna, Amanda Lin, Gregory W Fisher, Orhan Tunç Çeliker, Jill Caldwell, Omer Bender, Peter Joseph Sauer, Jose Lugo-Martinez, Daniel Z Bar, Leonardo D'Aiuto, Or A Shemesh\",\"doi\":\"10.1016/j.celrep.2024.115109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) diagnosis relies on the presence of extracellular β-amyloid (Aβ) and intracellular hyperphosphorylated tau (p-tau). Emerging evidence suggests a potential link between AD pathologies and infectious agents, with herpes simplex virus 1 (HSV-1) being a leading candidate. Our investigation, using metagenomics, mass spectrometry, western blotting, and decrowding expansion pathology, detects HSV-1-associated proteins in human brain samples. Expression of the herpesvirus protein ICP27 increases with AD severity and strongly colocalizes with p-tau but not with Aβ. Modeling in human brain organoids shows that HSV-1 infection elevates tau phosphorylation. Notably, p-tau reduces ICP27 expression and markedly decreases post-infection neuronal death from 64% to 7%. This modeling prompts investigation into the cGAS-STING-TBK1 pathway products, nuclear factor (NF)-κB and IRF-3, which colocalizes with ICP27 and p-tau in AD. Furthermore, experimental activation of STING enhances tau phosphorylation, while TBK1 inhibition prevents it. Together, these findings suggest that tau phosphorylation acts as an innate immune response in AD, driven by cGAS-STING.</p>\",\"PeriodicalId\":9798,\"journal\":{\"name\":\"Cell reports\",\"volume\":\" \",\"pages\":\"115109\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.celrep.2024.115109\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.115109","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)的诊断依赖于细胞外β-淀粉样蛋白(Aβ)和细胞内高磷酸化tau蛋白(p-tau)的存在。新出现的证据表明阿尔茨海默病的病理与感染因子之间存在潜在的联系,其中单纯疱疹病毒1型(HSV-1)是一个主要的候选者。我们的研究,使用宏基因组学,质谱,western blotting和拥挤扩增病理学,检测人脑样本中的hsv -1相关蛋白。疱疹病毒蛋白ICP27的表达随着AD严重程度的增加而增加,并且与p-tau强共定位,而与Aβ不共定位。人脑类器官模型显示,HSV-1感染会提高tau蛋白磷酸化水平。值得注意的是,p-tau降低了ICP27的表达,并显著降低了感染后神经元的死亡率,从64%降至7%。该模型促进了对cGAS-STING-TBK1通路产物、核因子(NF)-κB和IRF-3的研究,它们在AD中与ICP27和p-tau共定位。此外,STING的实验激活增强了tau的磷酸化,而TBK1的抑制则阻止了tau的磷酸化。总之,这些发现表明tau磷酸化在AD中作为先天免疫反应,由cGAS-STING驱动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anti-herpetic tau preserves neurons via the cGAS-STING-TBK1 pathway in Alzheimer's disease.

Alzheimer's disease (AD) diagnosis relies on the presence of extracellular β-amyloid (Aβ) and intracellular hyperphosphorylated tau (p-tau). Emerging evidence suggests a potential link between AD pathologies and infectious agents, with herpes simplex virus 1 (HSV-1) being a leading candidate. Our investigation, using metagenomics, mass spectrometry, western blotting, and decrowding expansion pathology, detects HSV-1-associated proteins in human brain samples. Expression of the herpesvirus protein ICP27 increases with AD severity and strongly colocalizes with p-tau but not with Aβ. Modeling in human brain organoids shows that HSV-1 infection elevates tau phosphorylation. Notably, p-tau reduces ICP27 expression and markedly decreases post-infection neuronal death from 64% to 7%. This modeling prompts investigation into the cGAS-STING-TBK1 pathway products, nuclear factor (NF)-κB and IRF-3, which colocalizes with ICP27 and p-tau in AD. Furthermore, experimental activation of STING enhances tau phosphorylation, while TBK1 inhibition prevents it. Together, these findings suggest that tau phosphorylation acts as an innate immune response in AD, driven by cGAS-STING.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell reports
Cell reports CELL BIOLOGY-
CiteScore
13.80
自引率
1.10%
发文量
1305
审稿时长
77 days
期刊介绍: Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted. The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership. The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信