{"title":"沉香内生微生物群落结构与动态对沉香形成的影响","authors":"Sudipta Sankar Bora, Ruponsing Ronghang, Pompi Das, Romen Singh Naorem, Dibya Jyoti Hazarika, Rahul Gogoi, Sofia Banu, Madhumita Barooah","doi":"10.1007/s00284-024-04048-2","DOIUrl":null,"url":null,"abstract":"<p><p>Aquilaria malaccensis Lam., an Agarwood-producing tree native to Southeast Asia, secretes oleoresin, a resin with diverse applications, in response to injuries. To explore the role of endosphere microbial communities during Agarwood development, we utilized a metagenomics approach across three stages: non-symptomatic (NC), symptomatic early (IN), and symptomatic mature (IN1). The NC metagenome was dominated by Bacillus (19.15%), Klebsiella (13.25%), and Pantoea (12.46%) among bacteria and Saccharomyces (15.92%) among fungi. Notably, bacterial chemotaxis pathway genes were more prevalent in NC (2.14%) compared to IN (0.92%) and IN1 (1.16%), suggesting microbial chemotactic behavior. In the IN stage, Klebsiella (27.05%) and Saccharomyces (34.81%) were the dominant genera. The IN1 metagenome featured Pantoea (8.92%) and Neurospora (8.24%) as leading bacterial and fungal genera, respectively. Functional genes associated with defense mechanisms, lipid transport, and secondary metabolite biosynthesis were increasingly represented in IN1, indicating an enhanced microbial response as infection progresses. Ecological indices, including a high Shannon-Wiener index (H' = 4.467) and Simpson's dominance (1 - D = 0.9697), alongside Pielou's evenness index (J = 0.7034), highlighted a dynamic and diverse microbial community at the mature infection stage, reflecting the complex interactions within the Aquilaria endosphere during Agarwood formation.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 2","pages":"66"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endophytic Microbial Community Structure and Dynamics Influence Agarwood Formation in Aquilaria malaccensis Lam.\",\"authors\":\"Sudipta Sankar Bora, Ruponsing Ronghang, Pompi Das, Romen Singh Naorem, Dibya Jyoti Hazarika, Rahul Gogoi, Sofia Banu, Madhumita Barooah\",\"doi\":\"10.1007/s00284-024-04048-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aquilaria malaccensis Lam., an Agarwood-producing tree native to Southeast Asia, secretes oleoresin, a resin with diverse applications, in response to injuries. To explore the role of endosphere microbial communities during Agarwood development, we utilized a metagenomics approach across three stages: non-symptomatic (NC), symptomatic early (IN), and symptomatic mature (IN1). The NC metagenome was dominated by Bacillus (19.15%), Klebsiella (13.25%), and Pantoea (12.46%) among bacteria and Saccharomyces (15.92%) among fungi. Notably, bacterial chemotaxis pathway genes were more prevalent in NC (2.14%) compared to IN (0.92%) and IN1 (1.16%), suggesting microbial chemotactic behavior. In the IN stage, Klebsiella (27.05%) and Saccharomyces (34.81%) were the dominant genera. The IN1 metagenome featured Pantoea (8.92%) and Neurospora (8.24%) as leading bacterial and fungal genera, respectively. Functional genes associated with defense mechanisms, lipid transport, and secondary metabolite biosynthesis were increasingly represented in IN1, indicating an enhanced microbial response as infection progresses. Ecological indices, including a high Shannon-Wiener index (H' = 4.467) and Simpson's dominance (1 - D = 0.9697), alongside Pielou's evenness index (J = 0.7034), highlighted a dynamic and diverse microbial community at the mature infection stage, reflecting the complex interactions within the Aquilaria endosphere during Agarwood formation.</p>\",\"PeriodicalId\":11360,\"journal\":{\"name\":\"Current Microbiology\",\"volume\":\"82 2\",\"pages\":\"66\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00284-024-04048-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-04048-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
黑木香是一种产沉香木的树,原产于东南亚,分泌油树脂,一种具有多种用途的树脂,以应对伤害。为了探索沉香生长过程中内球微生物群落的作用,我们采用宏基因组学方法,跨三个阶段:无症状(NC)、症状早期(IN)和症状成熟(IN1)。NC宏基因组在细菌中以芽孢杆菌(Bacillus)(19.15%)、克雷伯菌(Klebsiella)(13.25%)、泛菌(Pantoea)(12.46%)和真菌中以酵母菌(Saccharomyces)(15.92%)为主。值得注意的是,细菌趋化途径基因在NC(2.14%)中比in(0.92%)和IN1(1.16%)更普遍,表明微生物趋化行为。In期优势菌属为克雷伯菌(27.05%)和酵母菌(34.81%);IN1宏基因组以Pantoea(8.92%)和Neurospora(8.24%)为主要细菌属和真菌属。与防御机制、脂质转运和次生代谢物生物合成相关的功能基因在IN1中越来越多地出现,表明随着感染的进展,微生物反应增强。Shannon-Wiener指数(H′= 4.467)、Simpson优势度指数(1 - D = 0.9697)和Pielou均匀度指数(J = 0.7034)均显示沉香木香成熟侵染期微生物群落动态多样,反映沉香木香形成过程中沉香木香内球内部相互作用复杂。
Endophytic Microbial Community Structure and Dynamics Influence Agarwood Formation in Aquilaria malaccensis Lam.
Aquilaria malaccensis Lam., an Agarwood-producing tree native to Southeast Asia, secretes oleoresin, a resin with diverse applications, in response to injuries. To explore the role of endosphere microbial communities during Agarwood development, we utilized a metagenomics approach across three stages: non-symptomatic (NC), symptomatic early (IN), and symptomatic mature (IN1). The NC metagenome was dominated by Bacillus (19.15%), Klebsiella (13.25%), and Pantoea (12.46%) among bacteria and Saccharomyces (15.92%) among fungi. Notably, bacterial chemotaxis pathway genes were more prevalent in NC (2.14%) compared to IN (0.92%) and IN1 (1.16%), suggesting microbial chemotactic behavior. In the IN stage, Klebsiella (27.05%) and Saccharomyces (34.81%) were the dominant genera. The IN1 metagenome featured Pantoea (8.92%) and Neurospora (8.24%) as leading bacterial and fungal genera, respectively. Functional genes associated with defense mechanisms, lipid transport, and secondary metabolite biosynthesis were increasingly represented in IN1, indicating an enhanced microbial response as infection progresses. Ecological indices, including a high Shannon-Wiener index (H' = 4.467) and Simpson's dominance (1 - D = 0.9697), alongside Pielou's evenness index (J = 0.7034), highlighted a dynamic and diverse microbial community at the mature infection stage, reflecting the complex interactions within the Aquilaria endosphere during Agarwood formation.
期刊介绍:
Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment.
Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas:
physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.