低渗透胁迫改变昼夜节律基因的转录。

IF 3.2 3区 生物学 Q2 BIOPHYSICS
Biophysical journal Pub Date : 2025-02-04 Epub Date: 2025-01-02 DOI:10.1016/j.bpj.2024.12.027
Androniqi Qifti, Ayobami Adeeko, Madison Rennie, Elizabeth McGlaughlin, David McKinnon, Barbara Rosati, Suzanne Scarlata
{"title":"低渗透胁迫改变昼夜节律基因的转录。","authors":"Androniqi Qifti, Ayobami Adeeko, Madison Rennie, Elizabeth McGlaughlin, David McKinnon, Barbara Rosati, Suzanne Scarlata","doi":"10.1016/j.bpj.2024.12.027","DOIUrl":null,"url":null,"abstract":"<p><p>Cells respond to hypoosmotic stress by initial swelling followed by intracellular increases in the number of osmolytes and initiation of gene transcription that allow cells to adapt to the stress. Here, we have studied the genes that change expression under mild hypoosmotic stress for 12 and 24 h in rat cultured smooth muscle cells (WKO-3M22). We find shifts in the transcription of many genes, several of which are associated with circadian rhythm, such as per1, nr1d1, per2, dbp, and Ciart. To determine whether there is a connection between osmotic stress and circadian rhythm, we first subjected cells to hypoosmotic stress for 12 h, and find that Bmal1, a transcription factor whose nuclear localization promotes transit through the cell cycle, localizes to the cytoplasm, which may connect osmotic stress to cell cycle. Bmal1 nuclear localization recovers after 24 h and cell cycle resumes even though the osmotic stress remains elevated. We hypothesized that osmotic force is transmitted into the cell by deforming caveolae membrane domains releasing one of its structural proteins, cavin-1, which can travel to the nucleus and affect gene transcription. In support of this idea, we find that Bmal1 localization becomes independent of osmotic stress with cavin-1 downregulation, and Bmal1 localization is independent of osmotic stress in a cell line with low caveolae expression. These studies indicate that osmotic stress transiently arrests circadian rhythm and cell-cycle progression through caveolae deformation.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":"565-573"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypoosmotic stress shifts transcription of circadian genes.\",\"authors\":\"Androniqi Qifti, Ayobami Adeeko, Madison Rennie, Elizabeth McGlaughlin, David McKinnon, Barbara Rosati, Suzanne Scarlata\",\"doi\":\"10.1016/j.bpj.2024.12.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cells respond to hypoosmotic stress by initial swelling followed by intracellular increases in the number of osmolytes and initiation of gene transcription that allow cells to adapt to the stress. Here, we have studied the genes that change expression under mild hypoosmotic stress for 12 and 24 h in rat cultured smooth muscle cells (WKO-3M22). We find shifts in the transcription of many genes, several of which are associated with circadian rhythm, such as per1, nr1d1, per2, dbp, and Ciart. To determine whether there is a connection between osmotic stress and circadian rhythm, we first subjected cells to hypoosmotic stress for 12 h, and find that Bmal1, a transcription factor whose nuclear localization promotes transit through the cell cycle, localizes to the cytoplasm, which may connect osmotic stress to cell cycle. Bmal1 nuclear localization recovers after 24 h and cell cycle resumes even though the osmotic stress remains elevated. We hypothesized that osmotic force is transmitted into the cell by deforming caveolae membrane domains releasing one of its structural proteins, cavin-1, which can travel to the nucleus and affect gene transcription. In support of this idea, we find that Bmal1 localization becomes independent of osmotic stress with cavin-1 downregulation, and Bmal1 localization is independent of osmotic stress in a cell line with low caveolae expression. These studies indicate that osmotic stress transiently arrests circadian rhythm and cell-cycle progression through caveolae deformation.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"565-573\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2024.12.027\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.12.027","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

细胞对低渗透胁迫的反应是最初的肿胀,随后细胞内渗透细胞数量增加,并开始基因转录,使细胞能够适应压力。在这里,我们研究了在轻度低渗透胁迫下12和24小时大鼠培养平滑肌细胞(WKO-3M22)表达变化的基因。我们发现许多基因的转录发生了变化,其中一些与昼夜节律有关,如per1、nr1d1、per2、dbp和Ciart。为了确定渗透胁迫与昼夜节律之间是否存在联系,我们首先将细胞置于低渗透胁迫下12小时,发现细胞核定位促进细胞周期转运的转录因子Bmal1定位于细胞质,这可能将渗透胁迫与细胞周期联系起来。24小时后Bmal1核定位恢复,细胞周期恢复,尽管渗透胁迫仍然升高。我们假设渗透力是通过使小泡膜结构域变形,释放出一种结构蛋白cavin-1传递到细胞核并影响基因转录而传递到细胞内的。为了支持这一观点,我们发现随着cavin-1的下调,Bmal1的定位不受渗透胁迫的影响,并且在低cavin-1表达的细胞系中,Bmal1的定位不受渗透胁迫的影响。这些研究表明,渗透胁迫通过小泡变形暂时阻止昼夜节律和细胞周期进程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypoosmotic stress shifts transcription of circadian genes.

Cells respond to hypoosmotic stress by initial swelling followed by intracellular increases in the number of osmolytes and initiation of gene transcription that allow cells to adapt to the stress. Here, we have studied the genes that change expression under mild hypoosmotic stress for 12 and 24 h in rat cultured smooth muscle cells (WKO-3M22). We find shifts in the transcription of many genes, several of which are associated with circadian rhythm, such as per1, nr1d1, per2, dbp, and Ciart. To determine whether there is a connection between osmotic stress and circadian rhythm, we first subjected cells to hypoosmotic stress for 12 h, and find that Bmal1, a transcription factor whose nuclear localization promotes transit through the cell cycle, localizes to the cytoplasm, which may connect osmotic stress to cell cycle. Bmal1 nuclear localization recovers after 24 h and cell cycle resumes even though the osmotic stress remains elevated. We hypothesized that osmotic force is transmitted into the cell by deforming caveolae membrane domains releasing one of its structural proteins, cavin-1, which can travel to the nucleus and affect gene transcription. In support of this idea, we find that Bmal1 localization becomes independent of osmotic stress with cavin-1 downregulation, and Bmal1 localization is independent of osmotic stress in a cell line with low caveolae expression. These studies indicate that osmotic stress transiently arrests circadian rhythm and cell-cycle progression through caveolae deformation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信