{"title":"研究了Cu(Ⅱ)、Fe(Ⅱ)和Co(Ⅱ)在秸秆生物炭上的吸附行为和机理及其对环丙沙星的fenton类净化性能。","authors":"Qinyu Yang, Jie Gao, Ting Guo, Weitian Yang, Zuoping Zhao, Guang Wen","doi":"10.1016/j.jenvman.2024.123962","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the adsorption of aqueous Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) on biochars at diverse synthesized temperatures was evaluated. The optimal sample BC-800 achieved superior adsorption performance of Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) at 10-50 mg L<sup>-1</sup> initial concentration. Due to the larger surface area (349.6 m<sup>2</sup>/g), total pore volume (0.24 cm<sup>3</sup>/g), average pore diameter (6.4 nm), higher degree of graphitization (I<sub>G</sub>/I<sub>D</sub> = 1.00) and stable aromatic carbon structure, BC-800 achieved excellent adsorption of Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) through multilayer chemical adsorption, corresponding to the pseudo-2nd-order and Freundlich model (Q<sub>m Cu(Ⅱ)</sub> = 433.4 mg g<sup>-1</sup>, Q<sub>m Fe(Ⅱ)</sub> = 472.0 mg g<sup>-1</sup> and Q<sub>m Co(Ⅱ)</sub> = 301.0 mg g<sup>-1</sup>). After then, the adsorbed biochars with Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) were directly used as heterogeneous catalysts in Fenton-like reaction for ciprofloxacin (CIP) degradation. Compared with Co-BC-800/peroxymonosulfate (PMS) system, Co-BC-800/H<sub>2</sub>O<sub>2</sub> system exhibited the 56.6% decontamination of CIP with lower ions leaching (0.53 mg/L) within 70 min. The 97.9% of CIP was finally removed by Co-BC-800/H<sub>2</sub>O<sub>2</sub> under optimized conditions: initial pH = 6.94, catalyst dosage = 1.0 g L<sup>-1</sup>, H<sub>2</sub>O<sub>2</sub> concentration = 0.44 g L<sup>-1</sup>. Furthermore, Co-BC-800 exhibited superior acid-base adaptability (2.94-10.94) and anti-anion interference ability. The removal of CIP was achieved by the synergistic effect of adsorption and oxidative degradation. This study proposes some insights into the behavior and mechanism of metal ions adsorption on biochar and hazardous waste treatment.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"373 ","pages":"123962"},"PeriodicalIF":8.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The adsorption behavior and mechanism of Cu(Ⅱ), Fe(Ⅱ) and Co(Ⅱ) on straw biochar and their Fenton-like performance for ciprofloxacin decontamination.\",\"authors\":\"Qinyu Yang, Jie Gao, Ting Guo, Weitian Yang, Zuoping Zhao, Guang Wen\",\"doi\":\"10.1016/j.jenvman.2024.123962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the adsorption of aqueous Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) on biochars at diverse synthesized temperatures was evaluated. The optimal sample BC-800 achieved superior adsorption performance of Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) at 10-50 mg L<sup>-1</sup> initial concentration. Due to the larger surface area (349.6 m<sup>2</sup>/g), total pore volume (0.24 cm<sup>3</sup>/g), average pore diameter (6.4 nm), higher degree of graphitization (I<sub>G</sub>/I<sub>D</sub> = 1.00) and stable aromatic carbon structure, BC-800 achieved excellent adsorption of Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) through multilayer chemical adsorption, corresponding to the pseudo-2nd-order and Freundlich model (Q<sub>m Cu(Ⅱ)</sub> = 433.4 mg g<sup>-1</sup>, Q<sub>m Fe(Ⅱ)</sub> = 472.0 mg g<sup>-1</sup> and Q<sub>m Co(Ⅱ)</sub> = 301.0 mg g<sup>-1</sup>). After then, the adsorbed biochars with Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) were directly used as heterogeneous catalysts in Fenton-like reaction for ciprofloxacin (CIP) degradation. Compared with Co-BC-800/peroxymonosulfate (PMS) system, Co-BC-800/H<sub>2</sub>O<sub>2</sub> system exhibited the 56.6% decontamination of CIP with lower ions leaching (0.53 mg/L) within 70 min. The 97.9% of CIP was finally removed by Co-BC-800/H<sub>2</sub>O<sub>2</sub> under optimized conditions: initial pH = 6.94, catalyst dosage = 1.0 g L<sup>-1</sup>, H<sub>2</sub>O<sub>2</sub> concentration = 0.44 g L<sup>-1</sup>. Furthermore, Co-BC-800 exhibited superior acid-base adaptability (2.94-10.94) and anti-anion interference ability. The removal of CIP was achieved by the synergistic effect of adsorption and oxidative degradation. This study proposes some insights into the behavior and mechanism of metal ions adsorption on biochar and hazardous waste treatment.</p>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":\"373 \",\"pages\":\"123962\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jenvman.2024.123962\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.123962","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The adsorption behavior and mechanism of Cu(Ⅱ), Fe(Ⅱ) and Co(Ⅱ) on straw biochar and their Fenton-like performance for ciprofloxacin decontamination.
In this study, the adsorption of aqueous Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) on biochars at diverse synthesized temperatures was evaluated. The optimal sample BC-800 achieved superior adsorption performance of Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) at 10-50 mg L-1 initial concentration. Due to the larger surface area (349.6 m2/g), total pore volume (0.24 cm3/g), average pore diameter (6.4 nm), higher degree of graphitization (IG/ID = 1.00) and stable aromatic carbon structure, BC-800 achieved excellent adsorption of Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) through multilayer chemical adsorption, corresponding to the pseudo-2nd-order and Freundlich model (Qm Cu(Ⅱ) = 433.4 mg g-1, Qm Fe(Ⅱ) = 472.0 mg g-1 and Qm Co(Ⅱ) = 301.0 mg g-1). After then, the adsorbed biochars with Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) were directly used as heterogeneous catalysts in Fenton-like reaction for ciprofloxacin (CIP) degradation. Compared with Co-BC-800/peroxymonosulfate (PMS) system, Co-BC-800/H2O2 system exhibited the 56.6% decontamination of CIP with lower ions leaching (0.53 mg/L) within 70 min. The 97.9% of CIP was finally removed by Co-BC-800/H2O2 under optimized conditions: initial pH = 6.94, catalyst dosage = 1.0 g L-1, H2O2 concentration = 0.44 g L-1. Furthermore, Co-BC-800 exhibited superior acid-base adaptability (2.94-10.94) and anti-anion interference ability. The removal of CIP was achieved by the synergistic effect of adsorption and oxidative degradation. This study proposes some insights into the behavior and mechanism of metal ions adsorption on biochar and hazardous waste treatment.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.