{"title":"精氨酸作为高性能s阴极的多功能添加剂。","authors":"Lulu Ren, Ying Guo, Chunhua Ying, Justin Tangxin Zhong, Jin Liu, Wei-Hong Katie Zhong","doi":"10.1002/cssc.202402284","DOIUrl":null,"url":null,"abstract":"<p><p>Advancement of sulfur (S) cathode of lithium-sulfur (Li-S) batteries is hindered by issues such as insulating nature of sulfur, sluggish redox kinetics, polysulfide dissolution and shuttling. To address these issues, we initiate a study on applying an important amino acid of protein, arginine (Arg), as a functional additive into S cathode. Based on our simulation study, the positively charged Arg facilitates strong interactions with polysulfides. The experimental results indicate that the interaction enable capability of trapping polysulfides within the S cathode, responsible for reducing shuttle effects. Furthermore, the positively charged Arg also promotes efficient ion diffusion and polysulfides conversion. The new findings include that, with addition of only 1 wt % Arg, the resultant cathode demonstrates effectively enhanced electrolyte wettability, polysulfide adsorption and redox kinetics, leading to enhanced rate performance and long-term cycling stability. This study highlights the great potential of amino acids being able to act as effective functional bio-additives in S cathode, paving a new way to high-performance and sustainable energy storage solutions.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402284"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arginine as a Multifunctional Additive for High Performance S-Cathode.\",\"authors\":\"Lulu Ren, Ying Guo, Chunhua Ying, Justin Tangxin Zhong, Jin Liu, Wei-Hong Katie Zhong\",\"doi\":\"10.1002/cssc.202402284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advancement of sulfur (S) cathode of lithium-sulfur (Li-S) batteries is hindered by issues such as insulating nature of sulfur, sluggish redox kinetics, polysulfide dissolution and shuttling. To address these issues, we initiate a study on applying an important amino acid of protein, arginine (Arg), as a functional additive into S cathode. Based on our simulation study, the positively charged Arg facilitates strong interactions with polysulfides. The experimental results indicate that the interaction enable capability of trapping polysulfides within the S cathode, responsible for reducing shuttle effects. Furthermore, the positively charged Arg also promotes efficient ion diffusion and polysulfides conversion. The new findings include that, with addition of only 1 wt % Arg, the resultant cathode demonstrates effectively enhanced electrolyte wettability, polysulfide adsorption and redox kinetics, leading to enhanced rate performance and long-term cycling stability. This study highlights the great potential of amino acids being able to act as effective functional bio-additives in S cathode, paving a new way to high-performance and sustainable energy storage solutions.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202402284\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202402284\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402284","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Arginine as a Multifunctional Additive for High Performance S-Cathode.
Advancement of sulfur (S) cathode of lithium-sulfur (Li-S) batteries is hindered by issues such as insulating nature of sulfur, sluggish redox kinetics, polysulfide dissolution and shuttling. To address these issues, we initiate a study on applying an important amino acid of protein, arginine (Arg), as a functional additive into S cathode. Based on our simulation study, the positively charged Arg facilitates strong interactions with polysulfides. The experimental results indicate that the interaction enable capability of trapping polysulfides within the S cathode, responsible for reducing shuttle effects. Furthermore, the positively charged Arg also promotes efficient ion diffusion and polysulfides conversion. The new findings include that, with addition of only 1 wt % Arg, the resultant cathode demonstrates effectively enhanced electrolyte wettability, polysulfide adsorption and redox kinetics, leading to enhanced rate performance and long-term cycling stability. This study highlights the great potential of amino acids being able to act as effective functional bio-additives in S cathode, paving a new way to high-performance and sustainable energy storage solutions.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology