Wout Jacobs , Bernardo Camargo , Mohammed Ahmed , Evita Willems , Stevan M. Čokić , Fei Zhang , Jef Vleugels , Bart Van Meerbeek
{"title":"通过研磨和3d打印全轮廓氧化锆的光固化修复复合材料,用于胶粘剂。","authors":"Wout Jacobs , Bernardo Camargo , Mohammed Ahmed , Evita Willems , Stevan M. Čokić , Fei Zhang , Jef Vleugels , Bart Van Meerbeek","doi":"10.1016/j.dental.2024.12.008","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>To evaluate the effect of different zirconia compositions and manufacturing processes on the light irradiance (LI), to measure the degree of conversion (DC) of solely light-curing restorative composite underneath these zirconia grades and to evaluate the respective zirconia microstructures.</div></div><div><h3>Methods</h3><div>Six dental zirconia grades (GC HT, GC UHT [GC]; Katana HT, Katana UTML [Kuraray Noritake]; Lava Esthetic, Lava Plus [3 M Oral Care]) were cut and sintered per manufacturer instructions. One 3D-printed zirconia grade (XJet [XJET]) was prepared according to previous research. Zirconia plates were ground to four thicknesses (0.5, 1.0, 1.5, 3.0 mm). The LI through these zirconias was measured using light spectrometry using two light-curing units (Demi Plus [Kerr], Bluephase G4 [Ivoclar]). Restorative composite (Clearfil AP-X [Kuraray Noritake]) was light-cured through the zirconia plates and the DC was determined by micro-Raman spectrometry 5 min, 24 h and 1 w after light-curing. Statistical analysis of LI and DC data involved linear mixed-effects modelling and multi-way ANOVA. Microstructural analysis of zirconia was performed by scanning electron microscopy.</div></div><div><h3>Results</h3><div>Zirconia type and thickness, and LCU had a significant effect on LI (p < .0001). DC significantly increased over time (p < .0001) and was not influenced by curing-light attenuation if LI reached at least 40 mW/cm². Increased yttria content resulted in an increased zirconia grain size.</div></div><div><h3>Significance</h3><div>Despite significant light attenuation, DC of composite light-cured through zirconia at almost all thicknesses, approached DC measured without zirconia interposition for five out of seven zirconia grades. Additionally, the manufacturing process did not seem to influence LI or DC.</div></div>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":"41 3","pages":"Pages 331-340"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-curing of restorative composite through milled and 3D-printed full-contour zirconia for adhesive luting\",\"authors\":\"Wout Jacobs , Bernardo Camargo , Mohammed Ahmed , Evita Willems , Stevan M. Čokić , Fei Zhang , Jef Vleugels , Bart Van Meerbeek\",\"doi\":\"10.1016/j.dental.2024.12.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>To evaluate the effect of different zirconia compositions and manufacturing processes on the light irradiance (LI), to measure the degree of conversion (DC) of solely light-curing restorative composite underneath these zirconia grades and to evaluate the respective zirconia microstructures.</div></div><div><h3>Methods</h3><div>Six dental zirconia grades (GC HT, GC UHT [GC]; Katana HT, Katana UTML [Kuraray Noritake]; Lava Esthetic, Lava Plus [3 M Oral Care]) were cut and sintered per manufacturer instructions. One 3D-printed zirconia grade (XJet [XJET]) was prepared according to previous research. Zirconia plates were ground to four thicknesses (0.5, 1.0, 1.5, 3.0 mm). The LI through these zirconias was measured using light spectrometry using two light-curing units (Demi Plus [Kerr], Bluephase G4 [Ivoclar]). Restorative composite (Clearfil AP-X [Kuraray Noritake]) was light-cured through the zirconia plates and the DC was determined by micro-Raman spectrometry 5 min, 24 h and 1 w after light-curing. Statistical analysis of LI and DC data involved linear mixed-effects modelling and multi-way ANOVA. Microstructural analysis of zirconia was performed by scanning electron microscopy.</div></div><div><h3>Results</h3><div>Zirconia type and thickness, and LCU had a significant effect on LI (p < .0001). DC significantly increased over time (p < .0001) and was not influenced by curing-light attenuation if LI reached at least 40 mW/cm². Increased yttria content resulted in an increased zirconia grain size.</div></div><div><h3>Significance</h3><div>Despite significant light attenuation, DC of composite light-cured through zirconia at almost all thicknesses, approached DC measured without zirconia interposition for five out of seven zirconia grades. Additionally, the manufacturing process did not seem to influence LI or DC.</div></div>\",\"PeriodicalId\":298,\"journal\":{\"name\":\"Dental Materials\",\"volume\":\"41 3\",\"pages\":\"Pages 331-340\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dental Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0109564124003683\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0109564124003683","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Light-curing of restorative composite through milled and 3D-printed full-contour zirconia for adhesive luting
Objectives
To evaluate the effect of different zirconia compositions and manufacturing processes on the light irradiance (LI), to measure the degree of conversion (DC) of solely light-curing restorative composite underneath these zirconia grades and to evaluate the respective zirconia microstructures.
Methods
Six dental zirconia grades (GC HT, GC UHT [GC]; Katana HT, Katana UTML [Kuraray Noritake]; Lava Esthetic, Lava Plus [3 M Oral Care]) were cut and sintered per manufacturer instructions. One 3D-printed zirconia grade (XJet [XJET]) was prepared according to previous research. Zirconia plates were ground to four thicknesses (0.5, 1.0, 1.5, 3.0 mm). The LI through these zirconias was measured using light spectrometry using two light-curing units (Demi Plus [Kerr], Bluephase G4 [Ivoclar]). Restorative composite (Clearfil AP-X [Kuraray Noritake]) was light-cured through the zirconia plates and the DC was determined by micro-Raman spectrometry 5 min, 24 h and 1 w after light-curing. Statistical analysis of LI and DC data involved linear mixed-effects modelling and multi-way ANOVA. Microstructural analysis of zirconia was performed by scanning electron microscopy.
Results
Zirconia type and thickness, and LCU had a significant effect on LI (p < .0001). DC significantly increased over time (p < .0001) and was not influenced by curing-light attenuation if LI reached at least 40 mW/cm². Increased yttria content resulted in an increased zirconia grain size.
Significance
Despite significant light attenuation, DC of composite light-cured through zirconia at almost all thicknesses, approached DC measured without zirconia interposition for five out of seven zirconia grades. Additionally, the manufacturing process did not seem to influence LI or DC.
期刊介绍:
Dental Materials publishes original research, review articles, and short communications.
Academy of Dental Materials members click here to register for free access to Dental Materials online.
The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology.
Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.