Han Fan, Jia Shang, Junbo Li, Bo Yang, Ding Zhou, Shanqing Jiang, Yuhang Fan, Ying Zhou, Yuwen Wang, Peidi Liu, Changyong Li, Zhishui Chen, Pu Chen
{"title":"通过非实质细胞移植在芯片上高通量形成预血管化hipsc衍生的肝胆类器官。","authors":"Han Fan, Jia Shang, Junbo Li, Bo Yang, Ding Zhou, Shanqing Jiang, Yuhang Fan, Ying Zhou, Yuwen Wang, Peidi Liu, Changyong Li, Zhishui Chen, Pu Chen","doi":"10.1002/advs.202407945","DOIUrl":null,"url":null,"abstract":"<p>Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG). Endothelial and mesenchymal cells are grafted to human hepatobiliary organoids (hHBOs) at the different liver epithelial differentiation stages without supplementing with nonparenchymal culture medium and growth factors. Endothelial grafting at the stage of hepatic maturation offers an optimal integration efficiency compared to the stage of hepatic specification. Additionally, grafting with mesenchymal proves crucial in endothelial invading and sprouting into the liver epithelial cells during the establishment of vhHBOs. Ectopic liver implants into mice further displayed integration of vhHBOs into mice vascular networks. Notably, transplanted vhHBOs self-organized into native liver tissue like hepatic zone and bile ducts, indicating their potential to regenerate damaged hepatic and bile duct tissues. It is believed that nonparenchymal cell grafting will offer a novel technical route to form a high-fidelity complex in vitro model for tissue engineering and regenerative medicine.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 8","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202407945","citationCount":"0","resultStr":"{\"title\":\"High-Throughput Formation of Pre-Vascularized hiPSC-Derived Hepatobiliary Organoids on a Chip via Nonparenchymal Cell Grafting\",\"authors\":\"Han Fan, Jia Shang, Junbo Li, Bo Yang, Ding Zhou, Shanqing Jiang, Yuhang Fan, Ying Zhou, Yuwen Wang, Peidi Liu, Changyong Li, Zhishui Chen, Pu Chen\",\"doi\":\"10.1002/advs.202407945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG). Endothelial and mesenchymal cells are grafted to human hepatobiliary organoids (hHBOs) at the different liver epithelial differentiation stages without supplementing with nonparenchymal culture medium and growth factors. Endothelial grafting at the stage of hepatic maturation offers an optimal integration efficiency compared to the stage of hepatic specification. Additionally, grafting with mesenchymal proves crucial in endothelial invading and sprouting into the liver epithelial cells during the establishment of vhHBOs. Ectopic liver implants into mice further displayed integration of vhHBOs into mice vascular networks. Notably, transplanted vhHBOs self-organized into native liver tissue like hepatic zone and bile ducts, indicating their potential to regenerate damaged hepatic and bile duct tissues. It is believed that nonparenchymal cell grafting will offer a novel technical route to form a high-fidelity complex in vitro model for tissue engineering and regenerative medicine.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 8\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202407945\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202407945\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202407945","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
High-Throughput Formation of Pre-Vascularized hiPSC-Derived Hepatobiliary Organoids on a Chip via Nonparenchymal Cell Grafting
Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG). Endothelial and mesenchymal cells are grafted to human hepatobiliary organoids (hHBOs) at the different liver epithelial differentiation stages without supplementing with nonparenchymal culture medium and growth factors. Endothelial grafting at the stage of hepatic maturation offers an optimal integration efficiency compared to the stage of hepatic specification. Additionally, grafting with mesenchymal proves crucial in endothelial invading and sprouting into the liver epithelial cells during the establishment of vhHBOs. Ectopic liver implants into mice further displayed integration of vhHBOs into mice vascular networks. Notably, transplanted vhHBOs self-organized into native liver tissue like hepatic zone and bile ducts, indicating their potential to regenerate damaged hepatic and bile duct tissues. It is believed that nonparenchymal cell grafting will offer a novel technical route to form a high-fidelity complex in vitro model for tissue engineering and regenerative medicine.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.