{"title":"评价纳米捕集器微生物组颗粒作为废水病毒浓缩方法","authors":"Marlee Shaffer, Devin North, Kyle Bibby","doi":"10.1007/s12560-024-09628-w","DOIUrl":null,"url":null,"abstract":"<div><p>Wastewater-based surveillance has emerged as a powerful approach to monitoring infectious diseases within a community. Typically, wastewater samples are concentrated before viral analyses to improve sensitivity. Current concentration methods vary in time requirements, costs, and efficiency. Here, we evaluated the concentration efficiency and bias of a novel viral concentration approach, Nanotrap Microbiome Particles (NMP), in wastewater. NMP concentration efficiency was target-specific, with significantly lower concentrations of the bacterial indicator HF183 and viral indicator <i>Carjivirus</i> (formerly crAssphage) relative to direct extraction (1.2 × 10<sup>5</sup> vs. 3.4 × 10<sup>5</sup> GC/mL and 2.0 × 10<sup>5</sup> vs. 1.2 × 10<sup>5</sup> GC/mL, respectively), but significantly higher concentrations of the viral fecal indicator Pepper Mild Mottle Virus (PMMoV) relative to direct extraction (1.4 × 10<sup>5</sup> vs. 8.4 × 10<sup>3</sup> GC/mL). Targeted metagenomic sequencing showed that NMP resulted in significantly more unique species reads per sample than direct extractions (<i>p</i> < 0.001) by detecting species that went undetected by direct extractions. Key viral families identified with high abundances were Adenoviridae, Caliciviridae, Herpesviridae, Papillomaviridae, and Polyomaviridae. NMP showed differential ability for concentrating clinically relevant viral families, suggesting that the technology should be evaluated and optimized for specific viral targets before implementation.</p></div>","PeriodicalId":563,"journal":{"name":"Food and Environmental Virology","volume":"17 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12560-024-09628-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluating Nanotrap Microbiome Particles as A Wastewater Viral Concentration Method\",\"authors\":\"Marlee Shaffer, Devin North, Kyle Bibby\",\"doi\":\"10.1007/s12560-024-09628-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wastewater-based surveillance has emerged as a powerful approach to monitoring infectious diseases within a community. Typically, wastewater samples are concentrated before viral analyses to improve sensitivity. Current concentration methods vary in time requirements, costs, and efficiency. Here, we evaluated the concentration efficiency and bias of a novel viral concentration approach, Nanotrap Microbiome Particles (NMP), in wastewater. NMP concentration efficiency was target-specific, with significantly lower concentrations of the bacterial indicator HF183 and viral indicator <i>Carjivirus</i> (formerly crAssphage) relative to direct extraction (1.2 × 10<sup>5</sup> vs. 3.4 × 10<sup>5</sup> GC/mL and 2.0 × 10<sup>5</sup> vs. 1.2 × 10<sup>5</sup> GC/mL, respectively), but significantly higher concentrations of the viral fecal indicator Pepper Mild Mottle Virus (PMMoV) relative to direct extraction (1.4 × 10<sup>5</sup> vs. 8.4 × 10<sup>3</sup> GC/mL). Targeted metagenomic sequencing showed that NMP resulted in significantly more unique species reads per sample than direct extractions (<i>p</i> < 0.001) by detecting species that went undetected by direct extractions. Key viral families identified with high abundances were Adenoviridae, Caliciviridae, Herpesviridae, Papillomaviridae, and Polyomaviridae. NMP showed differential ability for concentrating clinically relevant viral families, suggesting that the technology should be evaluated and optimized for specific viral targets before implementation.</p></div>\",\"PeriodicalId\":563,\"journal\":{\"name\":\"Food and Environmental Virology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12560-024-09628-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Environmental Virology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12560-024-09628-w\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Environmental Virology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12560-024-09628-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Evaluating Nanotrap Microbiome Particles as A Wastewater Viral Concentration Method
Wastewater-based surveillance has emerged as a powerful approach to monitoring infectious diseases within a community. Typically, wastewater samples are concentrated before viral analyses to improve sensitivity. Current concentration methods vary in time requirements, costs, and efficiency. Here, we evaluated the concentration efficiency and bias of a novel viral concentration approach, Nanotrap Microbiome Particles (NMP), in wastewater. NMP concentration efficiency was target-specific, with significantly lower concentrations of the bacterial indicator HF183 and viral indicator Carjivirus (formerly crAssphage) relative to direct extraction (1.2 × 105 vs. 3.4 × 105 GC/mL and 2.0 × 105 vs. 1.2 × 105 GC/mL, respectively), but significantly higher concentrations of the viral fecal indicator Pepper Mild Mottle Virus (PMMoV) relative to direct extraction (1.4 × 105 vs. 8.4 × 103 GC/mL). Targeted metagenomic sequencing showed that NMP resulted in significantly more unique species reads per sample than direct extractions (p < 0.001) by detecting species that went undetected by direct extractions. Key viral families identified with high abundances were Adenoviridae, Caliciviridae, Herpesviridae, Papillomaviridae, and Polyomaviridae. NMP showed differential ability for concentrating clinically relevant viral families, suggesting that the technology should be evaluated and optimized for specific viral targets before implementation.
期刊介绍:
Food and Environmental Virology publishes original articles, notes and review articles on any aspect relating to the transmission of pathogenic viruses via the environment (water, air, soil etc.) and foods. This includes epidemiological studies, identification of novel or emerging pathogens, methods of analysis or characterisation, studies on survival and elimination, and development of procedural controls for industrial processes, e.g. HACCP plans. The journal will cover all aspects of this important area, and encompass studies on any human, animal, and plant pathogenic virus which is capable of transmission via the environment or food.