分形均匀化的反常扩散

IF 2.4 1区 数学 Q1 MATHEMATICS
Scott Armstrong, Vlad Vicol
{"title":"分形均匀化的反常扩散","authors":"Scott Armstrong,&nbsp;Vlad Vicol","doi":"10.1007/s40818-024-00189-6","DOIUrl":null,"url":null,"abstract":"<div><p>For every <span>\\(\\alpha &lt; \\nicefrac 13\\)</span>, we construct an explicit divergence-free vector field <span>\\({\\textbf {b}}(t,x)\\)</span> which is periodic in space and time and belongs to <span>\\(C^0_t C^{\\alpha }_x \\cap C^{\\alpha }_t C^0_x\\)</span> such that the corresponding scalar advection-diffusion equation </p><div><div><span>$$\\begin{aligned} \\partial _t \\theta ^\\kappa + {\\textbf {b}}\\cdot \\nabla \\theta ^\\kappa - \\kappa \\Delta \\theta ^\\kappa = 0\\end{aligned}$$</span></div></div><p>exhibits anomalous dissipation of scalar variance for arbitrary <span>\\(H^1\\)</span> initial data: </p><div><div><span>$$\\begin{aligned}\\limsup _{\\kappa \\rightarrow 0} \\int _0^{1} \\int _{\\mathbb {T}^d} \\kappa \\bigl | \\nabla \\theta ^\\kappa (t,x) \\bigr |^2 \\,dx\\,dt &gt;0.\\end{aligned}$$</span></div></div><p>The vector field is deterministic and has a fractal structure, with periodic shear flows alternating in time between different directions serving as the base fractal. These shear flows are repeatedly inserted at infinitely many scales in suitable Lagrangian coordinates. Using an argument based on ideas from quantitative homogenization, the corresponding advection-diffusion equation with small <span>\\(\\kappa \\)</span> is progressively renormalized, one scale at a time, starting from the (very small) length scale determined by the molecular diffusivity up to the macroscopic (unit) scale. At each renormalization step, the effective diffusivity is enhanced by the influence of advection on that scale. By iterating this procedure across many scales, the effective diffusivity on the macroscopic scale is shown to be of order one.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"11 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomalous Diffusion by Fractal Homogenization\",\"authors\":\"Scott Armstrong,&nbsp;Vlad Vicol\",\"doi\":\"10.1007/s40818-024-00189-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For every <span>\\\\(\\\\alpha &lt; \\\\nicefrac 13\\\\)</span>, we construct an explicit divergence-free vector field <span>\\\\({\\\\textbf {b}}(t,x)\\\\)</span> which is periodic in space and time and belongs to <span>\\\\(C^0_t C^{\\\\alpha }_x \\\\cap C^{\\\\alpha }_t C^0_x\\\\)</span> such that the corresponding scalar advection-diffusion equation </p><div><div><span>$$\\\\begin{aligned} \\\\partial _t \\\\theta ^\\\\kappa + {\\\\textbf {b}}\\\\cdot \\\\nabla \\\\theta ^\\\\kappa - \\\\kappa \\\\Delta \\\\theta ^\\\\kappa = 0\\\\end{aligned}$$</span></div></div><p>exhibits anomalous dissipation of scalar variance for arbitrary <span>\\\\(H^1\\\\)</span> initial data: </p><div><div><span>$$\\\\begin{aligned}\\\\limsup _{\\\\kappa \\\\rightarrow 0} \\\\int _0^{1} \\\\int _{\\\\mathbb {T}^d} \\\\kappa \\\\bigl | \\\\nabla \\\\theta ^\\\\kappa (t,x) \\\\bigr |^2 \\\\,dx\\\\,dt &gt;0.\\\\end{aligned}$$</span></div></div><p>The vector field is deterministic and has a fractal structure, with periodic shear flows alternating in time between different directions serving as the base fractal. These shear flows are repeatedly inserted at infinitely many scales in suitable Lagrangian coordinates. Using an argument based on ideas from quantitative homogenization, the corresponding advection-diffusion equation with small <span>\\\\(\\\\kappa \\\\)</span> is progressively renormalized, one scale at a time, starting from the (very small) length scale determined by the molecular diffusivity up to the macroscopic (unit) scale. At each renormalization step, the effective diffusivity is enhanced by the influence of advection on that scale. By iterating this procedure across many scales, the effective diffusivity on the macroscopic scale is shown to be of order one.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-024-00189-6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-024-00189-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于每一个\(\alpha < \nicefrac 13\),我们构造了一个显式的无散度矢量场\({\textbf {b}}(t,x)\),它在空间和时间上都是周期性的,并且属于\(C^0_t C^{\alpha }_x \cap C^{\alpha }_t C^0_x\),使得对应的标量平流扩散方程$$\begin{aligned} \partial _t \theta ^\kappa + {\textbf {b}}\cdot \nabla \theta ^\kappa - \kappa \Delta \theta ^\kappa = 0\end{aligned}$$对任意\(H^1\)初始数据表现出标量方差的反常耗散:$$\begin{aligned}\limsup _{\kappa \rightarrow 0} \int _0^{1} \int _{\mathbb {T}^d} \kappa \bigl | \nabla \theta ^\kappa (t,x) \bigr |^2 \,dx\,dt >0.\end{aligned}$$矢量场是确定性的,具有分形结构,不同方向间的周期性剪切流在时间上交替为分形基。这些剪切流在合适的拉格朗日坐标系中以无限多尺度重复插入。使用基于定量均质化思想的论证,相应的具有小\(\kappa \)的平流扩散方程逐步重新规范化,一次一个尺度,从由分子扩散率决定的(非常小的)长度尺度开始直到宏观(单位)尺度。在每一个重整化步骤中,有效扩散系数都受到该尺度上平流的影响而增强。通过在多个尺度上迭代此过程,表明宏观尺度上的有效扩散系数为1阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomalous Diffusion by Fractal Homogenization

For every \(\alpha < \nicefrac 13\), we construct an explicit divergence-free vector field \({\textbf {b}}(t,x)\) which is periodic in space and time and belongs to \(C^0_t C^{\alpha }_x \cap C^{\alpha }_t C^0_x\) such that the corresponding scalar advection-diffusion equation

$$\begin{aligned} \partial _t \theta ^\kappa + {\textbf {b}}\cdot \nabla \theta ^\kappa - \kappa \Delta \theta ^\kappa = 0\end{aligned}$$

exhibits anomalous dissipation of scalar variance for arbitrary \(H^1\) initial data:

$$\begin{aligned}\limsup _{\kappa \rightarrow 0} \int _0^{1} \int _{\mathbb {T}^d} \kappa \bigl | \nabla \theta ^\kappa (t,x) \bigr |^2 \,dx\,dt >0.\end{aligned}$$

The vector field is deterministic and has a fractal structure, with periodic shear flows alternating in time between different directions serving as the base fractal. These shear flows are repeatedly inserted at infinitely many scales in suitable Lagrangian coordinates. Using an argument based on ideas from quantitative homogenization, the corresponding advection-diffusion equation with small \(\kappa \) is progressively renormalized, one scale at a time, starting from the (very small) length scale determined by the molecular diffusivity up to the macroscopic (unit) scale. At each renormalization step, the effective diffusivity is enhanced by the influence of advection on that scale. By iterating this procedure across many scales, the effective diffusivity on the macroscopic scale is shown to be of order one.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信