Qiongyang Zhuang, Xiaofeng Jia, Jiangbing Yan, Jinde Lu
{"title":"ULSI互连中无空隙铜线的改进电化学镀","authors":"Qiongyang Zhuang, Xiaofeng Jia, Jiangbing Yan, Jinde Lu","doi":"10.1007/s13391-024-00530-y","DOIUrl":null,"url":null,"abstract":"<div><p>Being the fundamental process of advanced back-end-of-line (BEOL) interconnects, the performance of copper (Cu) electrochemical plating (ECP) affects the resistivity of metal lines and plays a crucial role in RC delay and reliability concerns. A great deal of attention has been focused on reducing the Cu voids, but few reports concentrate on the initial period of ECP, especially when the wafer is immersed in the electrolyte. By optimizing the wafer immersion conditions, I achieved a defect image quantification reduction from a maximum of 88ea to a minimum of 0ea, indicating that a void-free Cu line was realized through a standard plating process, thanks to the reduced surface potential difference during the initial phase. As we develop advanced technology nodes such as below the 7 nm technology node, the higher requirement for the RC delay and reliability performance, this work has good potential applications below the 7 nm technology node, because it provides a promising solution to reduce Cu line voids and can be beneficial to alleviate the RC delay and enhance the reliability in back end of line (BEOL) interconnection.</p><h3>Graphic Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"21 1","pages":"41 - 48"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Electrochemical Plating for Void-Free Copper Line in ULSI Interconnect\",\"authors\":\"Qiongyang Zhuang, Xiaofeng Jia, Jiangbing Yan, Jinde Lu\",\"doi\":\"10.1007/s13391-024-00530-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Being the fundamental process of advanced back-end-of-line (BEOL) interconnects, the performance of copper (Cu) electrochemical plating (ECP) affects the resistivity of metal lines and plays a crucial role in RC delay and reliability concerns. A great deal of attention has been focused on reducing the Cu voids, but few reports concentrate on the initial period of ECP, especially when the wafer is immersed in the electrolyte. By optimizing the wafer immersion conditions, I achieved a defect image quantification reduction from a maximum of 88ea to a minimum of 0ea, indicating that a void-free Cu line was realized through a standard plating process, thanks to the reduced surface potential difference during the initial phase. As we develop advanced technology nodes such as below the 7 nm technology node, the higher requirement for the RC delay and reliability performance, this work has good potential applications below the 7 nm technology node, because it provides a promising solution to reduce Cu line voids and can be beneficial to alleviate the RC delay and enhance the reliability in back end of line (BEOL) interconnection.</p><h3>Graphic Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":536,\"journal\":{\"name\":\"Electronic Materials Letters\",\"volume\":\"21 1\",\"pages\":\"41 - 48\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13391-024-00530-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-024-00530-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Improved Electrochemical Plating for Void-Free Copper Line in ULSI Interconnect
Being the fundamental process of advanced back-end-of-line (BEOL) interconnects, the performance of copper (Cu) electrochemical plating (ECP) affects the resistivity of metal lines and plays a crucial role in RC delay and reliability concerns. A great deal of attention has been focused on reducing the Cu voids, but few reports concentrate on the initial period of ECP, especially when the wafer is immersed in the electrolyte. By optimizing the wafer immersion conditions, I achieved a defect image quantification reduction from a maximum of 88ea to a minimum of 0ea, indicating that a void-free Cu line was realized through a standard plating process, thanks to the reduced surface potential difference during the initial phase. As we develop advanced technology nodes such as below the 7 nm technology node, the higher requirement for the RC delay and reliability performance, this work has good potential applications below the 7 nm technology node, because it provides a promising solution to reduce Cu line voids and can be beneficial to alleviate the RC delay and enhance the reliability in back end of line (BEOL) interconnection.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.