刘维尔理论的复兴

IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy
Nathan Benjamin, Scott Collier, Alexander Maloney, Viraj Meruliya
{"title":"刘维尔理论的复兴","authors":"Nathan Benjamin,&nbsp;Scott Collier,&nbsp;Alexander Maloney,&nbsp;Viraj Meruliya","doi":"10.1007/JHEP01(2025)038","DOIUrl":null,"url":null,"abstract":"<p>Liouville conformal field theory is a prototypical example of an exactly solvable quantum field theory, in the sense that the correlation functions in an arbitrary background can be determined exactly using only the constraints of unitarity and crossing symmetry. For example, the three point correlation functions are given by the famous formula of Dorn-Otto-Zamolodchikov-Zamolodchikov (DOZZ). Unlike many other exactly solvable theories, Liouville theory has a continuously tunable parameter — essentially ℏ — which is related to the central charge of the theory. Here we investigate the nature of the perturbative expansion in powers of ℏ, which is the loop expansion around a semi-classical solution. We show that the perturbative coefficients grow factorially, as expected of a Feynman diagram expansion, and take the form of an asymptotic series. We identify the singularities in the Borel plane, and show that they are associated with complex instanton solutions of Liouville theory; they correspond precisely to the complex solutions described by Harlow, Maltz, and Witten. Both single- and multi-valued solutions of Liouville appear. We show that the perturbative loop expansions around these different saddle points mix in the way expected for a trans-series expansion. Thus Liouville theory provides a calculable example of a quantum field theory where perturbative and instanton contributions can be summed up and assembled into a finite answer.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)038.pdf","citationCount":"0","resultStr":"{\"title\":\"Resurgence in Liouville theory\",\"authors\":\"Nathan Benjamin,&nbsp;Scott Collier,&nbsp;Alexander Maloney,&nbsp;Viraj Meruliya\",\"doi\":\"10.1007/JHEP01(2025)038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Liouville conformal field theory is a prototypical example of an exactly solvable quantum field theory, in the sense that the correlation functions in an arbitrary background can be determined exactly using only the constraints of unitarity and crossing symmetry. For example, the three point correlation functions are given by the famous formula of Dorn-Otto-Zamolodchikov-Zamolodchikov (DOZZ). Unlike many other exactly solvable theories, Liouville theory has a continuously tunable parameter — essentially ℏ — which is related to the central charge of the theory. Here we investigate the nature of the perturbative expansion in powers of ℏ, which is the loop expansion around a semi-classical solution. We show that the perturbative coefficients grow factorially, as expected of a Feynman diagram expansion, and take the form of an asymptotic series. We identify the singularities in the Borel plane, and show that they are associated with complex instanton solutions of Liouville theory; they correspond precisely to the complex solutions described by Harlow, Maltz, and Witten. Both single- and multi-valued solutions of Liouville appear. We show that the perturbative loop expansions around these different saddle points mix in the way expected for a trans-series expansion. Thus Liouville theory provides a calculable example of a quantum field theory where perturbative and instanton contributions can be summed up and assembled into a finite answer.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)038.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP01(2025)038\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP01(2025)038","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

刘维尔共形场论是精确可解量子场论的一个典型例子,在某种意义上,任意背景下的相关函数可以仅使用统一和交叉对称的约束来精确确定。例如,三点相关函数由著名的Dorn-Otto-Zamolodchikov-Zamolodchikov (DOZZ)公式给出。与许多其他精确可解的理论不同,刘维尔理论有一个连续可调的参数,本质上是与理论的中心电荷有关的。这里我们研究了微扰展开的性质,它是围绕一个半经典解的环展开。我们证明了摄动系数阶乘增长,正如费曼图展开所期望的那样,并采取渐近级数的形式。我们确定了Borel平面上的奇异点,并证明它们与Liouville理论的复瞬态解有关;它们与Harlow, Maltz和Witten所描述的复解精确对应。出现了Liouville的单值解和多值解。我们证明了围绕这些不同鞍点的微扰环展开以期望的跨级数展开的方式混合。因此,刘维尔理论为量子场论提供了一个可计算的例子,在量子场论中,微扰和瞬时的贡献可以被总结和组合成一个有限的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resurgence in Liouville theory

Liouville conformal field theory is a prototypical example of an exactly solvable quantum field theory, in the sense that the correlation functions in an arbitrary background can be determined exactly using only the constraints of unitarity and crossing symmetry. For example, the three point correlation functions are given by the famous formula of Dorn-Otto-Zamolodchikov-Zamolodchikov (DOZZ). Unlike many other exactly solvable theories, Liouville theory has a continuously tunable parameter — essentially ℏ — which is related to the central charge of the theory. Here we investigate the nature of the perturbative expansion in powers of ℏ, which is the loop expansion around a semi-classical solution. We show that the perturbative coefficients grow factorially, as expected of a Feynman diagram expansion, and take the form of an asymptotic series. We identify the singularities in the Borel plane, and show that they are associated with complex instanton solutions of Liouville theory; they correspond precisely to the complex solutions described by Harlow, Maltz, and Witten. Both single- and multi-valued solutions of Liouville appear. We show that the perturbative loop expansions around these different saddle points mix in the way expected for a trans-series expansion. Thus Liouville theory provides a calculable example of a quantum field theory where perturbative and instanton contributions can be summed up and assembled into a finite answer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信