R. Nourine, S. Abbaoui, M. Caid, H. Rached, D. Rached, Y. Rached, Nada Talal Mahmoud, S. Al-Qaisi
{"title":"rhco基四元Heusler合金电子和磁性能的第一性原理研究","authors":"R. Nourine, S. Abbaoui, M. Caid, H. Rached, D. Rached, Y. Rached, Nada Talal Mahmoud, S. Al-Qaisi","doi":"10.1007/s10948-024-06883-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this contribution, we present an ab initio investigation of the electronic and magnetic properties of some RhCo-based quaternary Heusler alloys (QH). QH compounds can be generated from doping the X<sub>2</sub>YZ full Heusler alloys; in this case, we start our study by tracking the electronic and magnetic properties variation of cobalt-doped Rh<sub>2</sub>MnSn. Our results reveal that Co-substitution at Rh sites of Rh<sub>2−<i>x</i></sub>Co<sub><i>x</i></sub>MnSn (<i>x</i> = 0 to 2) transforms it into half-metallic material when <i>x</i> ≥ 1. The calculated magnetic moment is 4.68<i>µ</i><sub><i>B</i></sub> for Rh<sub>2</sub>MnSn (<i>x</i> = 0), this value will increase with Co doping to be an integer 5 <i>µ</i><sub><i>B</i></sub> when <i>x</i> ≥ 1 obeys the Slater Pauling behavior. The spin polarization at the Fermi level varied from 20.76 to 100%. The Curie temperature (<i>Tc</i>) and exchange interaction are largely dependent on the valence electron number (<i>Nv</i>); for this purpose, we also identify some other quaternary RhCoMnZ (Z = Al, Si, Ga, Ge, Sn, Sb) compounds with different <i>Nv</i>. The exchange parameters (<i>j</i><sub><i>ij</i></sub>) and <i>Tc</i> are calculated using the LMTO method. The <i>Tc</i> is calculated with the mean-field approximation (<i>MFA</i>), and the results indicate that all compounds investigated have <i>Tc</i> evidently higher than room temperature making them promising candidates for spintronics applications. The latter results are in better agreement with available experimental and theoretical data.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-Principles Investigation of the Electronic and Magnetic Properties of RhCo-Based Quaternary Heusler Alloys\",\"authors\":\"R. Nourine, S. Abbaoui, M. Caid, H. Rached, D. Rached, Y. Rached, Nada Talal Mahmoud, S. Al-Qaisi\",\"doi\":\"10.1007/s10948-024-06883-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this contribution, we present an ab initio investigation of the electronic and magnetic properties of some RhCo-based quaternary Heusler alloys (QH). QH compounds can be generated from doping the X<sub>2</sub>YZ full Heusler alloys; in this case, we start our study by tracking the electronic and magnetic properties variation of cobalt-doped Rh<sub>2</sub>MnSn. Our results reveal that Co-substitution at Rh sites of Rh<sub>2−<i>x</i></sub>Co<sub><i>x</i></sub>MnSn (<i>x</i> = 0 to 2) transforms it into half-metallic material when <i>x</i> ≥ 1. The calculated magnetic moment is 4.68<i>µ</i><sub><i>B</i></sub> for Rh<sub>2</sub>MnSn (<i>x</i> = 0), this value will increase with Co doping to be an integer 5 <i>µ</i><sub><i>B</i></sub> when <i>x</i> ≥ 1 obeys the Slater Pauling behavior. The spin polarization at the Fermi level varied from 20.76 to 100%. The Curie temperature (<i>Tc</i>) and exchange interaction are largely dependent on the valence electron number (<i>Nv</i>); for this purpose, we also identify some other quaternary RhCoMnZ (Z = Al, Si, Ga, Ge, Sn, Sb) compounds with different <i>Nv</i>. The exchange parameters (<i>j</i><sub><i>ij</i></sub>) and <i>Tc</i> are calculated using the LMTO method. The <i>Tc</i> is calculated with the mean-field approximation (<i>MFA</i>), and the results indicate that all compounds investigated have <i>Tc</i> evidently higher than room temperature making them promising candidates for spintronics applications. The latter results are in better agreement with available experimental and theoretical data.</p></div>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10948-024-06883-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06883-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
First-Principles Investigation of the Electronic and Magnetic Properties of RhCo-Based Quaternary Heusler Alloys
In this contribution, we present an ab initio investigation of the electronic and magnetic properties of some RhCo-based quaternary Heusler alloys (QH). QH compounds can be generated from doping the X2YZ full Heusler alloys; in this case, we start our study by tracking the electronic and magnetic properties variation of cobalt-doped Rh2MnSn. Our results reveal that Co-substitution at Rh sites of Rh2−xCoxMnSn (x = 0 to 2) transforms it into half-metallic material when x ≥ 1. The calculated magnetic moment is 4.68µB for Rh2MnSn (x = 0), this value will increase with Co doping to be an integer 5 µB when x ≥ 1 obeys the Slater Pauling behavior. The spin polarization at the Fermi level varied from 20.76 to 100%. The Curie temperature (Tc) and exchange interaction are largely dependent on the valence electron number (Nv); for this purpose, we also identify some other quaternary RhCoMnZ (Z = Al, Si, Ga, Ge, Sn, Sb) compounds with different Nv. The exchange parameters (jij) and Tc are calculated using the LMTO method. The Tc is calculated with the mean-field approximation (MFA), and the results indicate that all compounds investigated have Tc evidently higher than room temperature making them promising candidates for spintronics applications. The latter results are in better agreement with available experimental and theoretical data.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.