肿瘤炎症特异性自扩增荧光分子探针诱导抗肿瘤免疫反应

IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuguang Yang, Lijun Hu, Hong Xiao, Zecong Xiao, Xintao Shuai
{"title":"肿瘤炎症特异性自扩增荧光分子探针诱导抗肿瘤免疫反应","authors":"Shuguang Yang,&nbsp;Lijun Hu,&nbsp;Hong Xiao,&nbsp;Zecong Xiao,&nbsp;Xintao Shuai","doi":"10.1007/s11426-024-2130-1","DOIUrl":null,"url":null,"abstract":"<div><p>Enhancing the concentration of exogenous molecular drugs within the tumor microenvironment through enzyme-catalyzed polymerization presents a novel strategy for cancer therapy. Nonetheless, the optimization of the catalytic efficiency is often impeded by the inefficient expression of enzymes. Herein, we reported a self-amplifying fluorescent molecular probe, Bis-HTP-ICG, for photodynamic therapy (PDT) and subsequent PDT-induced immunoreaction. The Bis-HTP-ICG probe possesses a noticeable enzyme-catalyzed polymerization facilitated by myeloperoxidase (MPO), a crucial enzyme secreted by neutrophils at inflammation sites. Upon exposure to laser irradiation, Bis-HTP-ICG showed a high PDT efficacy, inducing an acute inflammatory response that stimulates further recruitment of neutrophils and then elevated MPO secretion. The heightened level of MPO enhances the accumulation of the Bis-HTP-ICG via self-polymerization or binding with intratumoral proteins following MPO enzyme catalysis, instigating a self-amplifying chain reaction cycle involving Bis-HTP-ICG, neutrophils and MPO. Meanwhile, PDT efficiently incites immunogenic cell death (ICD) in tumor cells, initiating an anti-tumor immune response including dendritic cells (DCs) maturation, T cell proliferation and reprogramming of tumor-associated neutrophils (TANs). This work portrays a promising strategy for self-amplification of fluorescent molecular probes through adjustable enzyme levels, potentially offering a unique avenue to enhance the tumor accumulation of molecular drugs for improved tumor therapy.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"68 1","pages":"273 - 287"},"PeriodicalIF":10.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tumor inflammation-specific self-amplifying fluorescent molecular probes induce an anti-tumor immune response\",\"authors\":\"Shuguang Yang,&nbsp;Lijun Hu,&nbsp;Hong Xiao,&nbsp;Zecong Xiao,&nbsp;Xintao Shuai\",\"doi\":\"10.1007/s11426-024-2130-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enhancing the concentration of exogenous molecular drugs within the tumor microenvironment through enzyme-catalyzed polymerization presents a novel strategy for cancer therapy. Nonetheless, the optimization of the catalytic efficiency is often impeded by the inefficient expression of enzymes. Herein, we reported a self-amplifying fluorescent molecular probe, Bis-HTP-ICG, for photodynamic therapy (PDT) and subsequent PDT-induced immunoreaction. The Bis-HTP-ICG probe possesses a noticeable enzyme-catalyzed polymerization facilitated by myeloperoxidase (MPO), a crucial enzyme secreted by neutrophils at inflammation sites. Upon exposure to laser irradiation, Bis-HTP-ICG showed a high PDT efficacy, inducing an acute inflammatory response that stimulates further recruitment of neutrophils and then elevated MPO secretion. The heightened level of MPO enhances the accumulation of the Bis-HTP-ICG via self-polymerization or binding with intratumoral proteins following MPO enzyme catalysis, instigating a self-amplifying chain reaction cycle involving Bis-HTP-ICG, neutrophils and MPO. Meanwhile, PDT efficiently incites immunogenic cell death (ICD) in tumor cells, initiating an anti-tumor immune response including dendritic cells (DCs) maturation, T cell proliferation and reprogramming of tumor-associated neutrophils (TANs). This work portrays a promising strategy for self-amplification of fluorescent molecular probes through adjustable enzyme levels, potentially offering a unique avenue to enhance the tumor accumulation of molecular drugs for improved tumor therapy.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":772,\"journal\":{\"name\":\"Science China Chemistry\",\"volume\":\"68 1\",\"pages\":\"273 - 287\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11426-024-2130-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2130-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过酶催化聚合提高肿瘤微环境中外源分子药物的浓度是一种新的肿瘤治疗策略。然而,酶的低效表达往往阻碍了催化效率的优化。在这里,我们报道了一种自扩增荧光分子探针,Bis-HTP-ICG,用于光动力治疗(PDT)和随后的PDT诱导的免疫反应。Bis-HTP-ICG探针具有明显的酶催化聚合,由髓过氧化物酶(MPO)促进,MPO是炎症部位中性粒细胞分泌的一种重要酶。暴露于激光照射后,Bis-HTP-ICG显示出高PDT疗效,诱导急性炎症反应,刺激中性粒细胞的进一步募集,然后提高MPO的分泌。MPO水平的升高通过MPO酶催化下的自聚合或与肿瘤内蛋白结合,增强了Bis-HTP-ICG的积累,引发了一个涉及Bis-HTP-ICG、中性粒细胞和MPO的自扩增链式反应循环。同时,PDT有效地刺激肿瘤细胞的免疫原性细胞死亡(ICD),启动抗肿瘤免疫应答,包括树突状细胞(dc)成熟、T细胞增殖和肿瘤相关中性粒细胞(TANs)的重编程。这项工作描绘了一个有前途的策略,通过调节酶水平的荧光分子探针的自我扩增,潜在地提供了一个独特的途径,以提高分子药物的肿瘤积累,改善肿瘤治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tumor inflammation-specific self-amplifying fluorescent molecular probes induce an anti-tumor immune response

Enhancing the concentration of exogenous molecular drugs within the tumor microenvironment through enzyme-catalyzed polymerization presents a novel strategy for cancer therapy. Nonetheless, the optimization of the catalytic efficiency is often impeded by the inefficient expression of enzymes. Herein, we reported a self-amplifying fluorescent molecular probe, Bis-HTP-ICG, for photodynamic therapy (PDT) and subsequent PDT-induced immunoreaction. The Bis-HTP-ICG probe possesses a noticeable enzyme-catalyzed polymerization facilitated by myeloperoxidase (MPO), a crucial enzyme secreted by neutrophils at inflammation sites. Upon exposure to laser irradiation, Bis-HTP-ICG showed a high PDT efficacy, inducing an acute inflammatory response that stimulates further recruitment of neutrophils and then elevated MPO secretion. The heightened level of MPO enhances the accumulation of the Bis-HTP-ICG via self-polymerization or binding with intratumoral proteins following MPO enzyme catalysis, instigating a self-amplifying chain reaction cycle involving Bis-HTP-ICG, neutrophils and MPO. Meanwhile, PDT efficiently incites immunogenic cell death (ICD) in tumor cells, initiating an anti-tumor immune response including dendritic cells (DCs) maturation, T cell proliferation and reprogramming of tumor-associated neutrophils (TANs). This work portrays a promising strategy for self-amplification of fluorescent molecular probes through adjustable enzyme levels, potentially offering a unique avenue to enhance the tumor accumulation of molecular drugs for improved tumor therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Chemistry
Science China Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
7.30%
发文量
3787
审稿时长
2.2 months
期刊介绍: Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field. Categories of articles include: Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry. Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies. Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信