{"title":"基于图卷积网络和半监督学习的雷达信号分类","authors":"Ziying Li;Xiongjun Fu;Jian Dong;Min Xie","doi":"10.1109/LSP.2024.3519884","DOIUrl":null,"url":null,"abstract":"As a key technology in radar reconnaissance systems, radar signal sorting aims to separate multiple radar pulses from an interleaved pulse stream. Supervised signal sorting methods based on deep learning depend on a large volume of training data to optimize model parameters. However, acquiring labeled pulses in practice is challenging. In this letter, a semi-supervised learning (SSL) framework is proposed to address this issue. First, a Self-Organizing Map (SOM) is used to learn the spatial distribution of impulse features, and an anchor graph is constructed based on SOM nodes. A pseudo-label set is then generated using the SOM based on pulse discrepancy information. Finally, a three-layer Weighted Residual Graph Convolutional Network (WRGCN) is designed for signal sorting, with its parameters pre-trained on pseudo-labels and fine-tuned with a limited number of true labels. Experiments on a simulated radar pulse dataset demonstrate that this framework outperforms several existing methods for radar signal sorting with limited labeled pulses.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"421-425"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radar Signal Sorting via Graph Convolutional Network and Semi-Supervised Learning\",\"authors\":\"Ziying Li;Xiongjun Fu;Jian Dong;Min Xie\",\"doi\":\"10.1109/LSP.2024.3519884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a key technology in radar reconnaissance systems, radar signal sorting aims to separate multiple radar pulses from an interleaved pulse stream. Supervised signal sorting methods based on deep learning depend on a large volume of training data to optimize model parameters. However, acquiring labeled pulses in practice is challenging. In this letter, a semi-supervised learning (SSL) framework is proposed to address this issue. First, a Self-Organizing Map (SOM) is used to learn the spatial distribution of impulse features, and an anchor graph is constructed based on SOM nodes. A pseudo-label set is then generated using the SOM based on pulse discrepancy information. Finally, a three-layer Weighted Residual Graph Convolutional Network (WRGCN) is designed for signal sorting, with its parameters pre-trained on pseudo-labels and fine-tuned with a limited number of true labels. Experiments on a simulated radar pulse dataset demonstrate that this framework outperforms several existing methods for radar signal sorting with limited labeled pulses.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"421-425\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806592/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10806592/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Radar Signal Sorting via Graph Convolutional Network and Semi-Supervised Learning
As a key technology in radar reconnaissance systems, radar signal sorting aims to separate multiple radar pulses from an interleaved pulse stream. Supervised signal sorting methods based on deep learning depend on a large volume of training data to optimize model parameters. However, acquiring labeled pulses in practice is challenging. In this letter, a semi-supervised learning (SSL) framework is proposed to address this issue. First, a Self-Organizing Map (SOM) is used to learn the spatial distribution of impulse features, and an anchor graph is constructed based on SOM nodes. A pseudo-label set is then generated using the SOM based on pulse discrepancy information. Finally, a three-layer Weighted Residual Graph Convolutional Network (WRGCN) is designed for signal sorting, with its parameters pre-trained on pseudo-labels and fine-tuned with a limited number of true labels. Experiments on a simulated radar pulse dataset demonstrate that this framework outperforms several existing methods for radar signal sorting with limited labeled pulses.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.