校正事项:有校正的OCT宫颈分类的原型感知扩散

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuxuan Xiong;Zhou Zhao;Yongchao Xu;Yan Zhang;Bo Du
{"title":"校正事项:有校正的OCT宫颈分类的原型感知扩散","authors":"Yuxuan Xiong;Zhou Zhao;Yongchao Xu;Yan Zhang;Bo Du","doi":"10.1109/LSP.2024.3520010","DOIUrl":null,"url":null,"abstract":"Cervical optical coherence tomography (OCT) imaging serves as an effective diagnostic tool, and the development of deep learning classification models for OCT has the potential to enhance diagnosis. However, the complex imaging patterns of OCT data, significant noise, and the substantial domain gap from multi-center data result in high uncertainty and low accuracy in classification networks. To address these challenges, we propose a Multi-scale Prototype-Guided Diffusion learning method (MPGD), which is constructed with the \n<bold>Multi-scale Feature Condition (MFC)</b>\n, \n<bold>Diffusion-based Classification Calibrator (DCC)</b>\n, and \n<bold>Multi-scale Prototype Bank (MPB)</b>\n modules. Specifically, MFC provides initial classification based on multi-scale features, DCC calibrates MFC's classification results through a diffusion model, and MPB refines DCC's visual guidance using prototypes obtained from clustering. Extensive experiments demonstrate that MPGD outperforms widely-used competitors for cervical OCT image classification, showing excellent generalization performance.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"396-400"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration Matters: Prototype-Aware Diffusion for OCT Cervical Classification With Calibration\",\"authors\":\"Yuxuan Xiong;Zhou Zhao;Yongchao Xu;Yan Zhang;Bo Du\",\"doi\":\"10.1109/LSP.2024.3520010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cervical optical coherence tomography (OCT) imaging serves as an effective diagnostic tool, and the development of deep learning classification models for OCT has the potential to enhance diagnosis. However, the complex imaging patterns of OCT data, significant noise, and the substantial domain gap from multi-center data result in high uncertainty and low accuracy in classification networks. To address these challenges, we propose a Multi-scale Prototype-Guided Diffusion learning method (MPGD), which is constructed with the \\n<bold>Multi-scale Feature Condition (MFC)</b>\\n, \\n<bold>Diffusion-based Classification Calibrator (DCC)</b>\\n, and \\n<bold>Multi-scale Prototype Bank (MPB)</b>\\n modules. Specifically, MFC provides initial classification based on multi-scale features, DCC calibrates MFC's classification results through a diffusion model, and MPB refines DCC's visual guidance using prototypes obtained from clustering. Extensive experiments demonstrate that MPGD outperforms widely-used competitors for cervical OCT image classification, showing excellent generalization performance.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"396-400\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806844/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10806844/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

子宫颈光学相干断层扫描(OCT)成像是一种有效的诊断工具,而OCT的深度学习分类模型的发展有可能增强诊断。然而,OCT数据复杂的成像模式、明显的噪声以及多中心数据的大量域间隙导致了分类网络的高不确定性和低准确率。为了解决这些挑战,我们提出了一种多尺度原型引导扩散学习方法(MPGD),该方法由多尺度特征条件(MFC)、基于扩散的分类校准器(DCC)和多尺度原型库(MPB)模块组成。具体来说,MFC提供基于多尺度特征的初始分类,DCC通过扩散模型校准MFC的分类结果,MPB使用聚类获得的原型来完善DCC的视觉引导。大量的实验表明,MPGD在宫颈OCT图像分类中优于广泛使用的竞争对手,具有出色的泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibration Matters: Prototype-Aware Diffusion for OCT Cervical Classification With Calibration
Cervical optical coherence tomography (OCT) imaging serves as an effective diagnostic tool, and the development of deep learning classification models for OCT has the potential to enhance diagnosis. However, the complex imaging patterns of OCT data, significant noise, and the substantial domain gap from multi-center data result in high uncertainty and low accuracy in classification networks. To address these challenges, we propose a Multi-scale Prototype-Guided Diffusion learning method (MPGD), which is constructed with the Multi-scale Feature Condition (MFC) , Diffusion-based Classification Calibrator (DCC) , and Multi-scale Prototype Bank (MPB) modules. Specifically, MFC provides initial classification based on multi-scale features, DCC calibrates MFC's classification results through a diffusion model, and MPB refines DCC's visual guidance using prototypes obtained from clustering. Extensive experiments demonstrate that MPGD outperforms widely-used competitors for cervical OCT image classification, showing excellent generalization performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信