产前暴露于多种重金属对婴儿神经发育的影响:一种多统计方法

IF 7.6 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Xiruo Kou, Meritxell Pallejà Millán, Josefa Canals, Victoria Rivera Moreno, Stefano Renzetti, Victoria Arija
{"title":"产前暴露于多种重金属对婴儿神经发育的影响:一种多统计方法","authors":"Xiruo Kou, Meritxell Pallejà Millán, Josefa Canals, Victoria Rivera Moreno, Stefano Renzetti, Victoria Arija","doi":"10.1016/j.envpol.2025.125647","DOIUrl":null,"url":null,"abstract":"Prenatal exposure to heavy metals poses risks to fetal brain development, yet the joint effects of these metals remain unclear, with inconsistent findings across statistical models. This study investigates the joint effect of prenatal exposure to cadmium (Cd), nickel (Ni), mercury (Hg), and lead (Pb) on infant neurodevelopment using various statistical approaches. The study included 400 mother-infant pairs. Heavy metal levels were measured in maternal urine samples at the 12th week of gestation, and infant neurodevelopment at 40 days was evaluated by the Bayley Scales of Infant and Toddler Development. Generalized Additive Models (GAM), Multivariable Linear Regression (MLR) with restricted cubic spline (RCS), Bayesian Kernel Machine Regression (BKMR), and Weighted Quantile Sum (WQS) regression were applied to explore the associations between heavy metal exposure and neurodevelopmental outcomes. GAM revealed a significant linear relationship for Cd with cognitive scale (p = 0.045) and expressive language (p = 0.043). MLR confirmed that Cd was negatively associated with both cognitive scale (β = -1.47, p = 0.044) and expressive language (β = -0.32, p = 0.019) and RCS presented a non-linear association between Pb and language scale (p = 0.001). BKMR suggested a negative but non-significant association with most outcomes. WQS indicated a significant adverse effect of metal mixture on expressive language (β = -0.26, 95% CI = -0.44, -0.07), identifying Cd and Ni as the primary contributors. Prenatal exposure to heavy metals have detrimental effects on infant neurodevelopment, especially on language development.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"20 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of prenatal exposure to multiple heavy metals on infant neurodevelopment: a multi-statistical approach\",\"authors\":\"Xiruo Kou, Meritxell Pallejà Millán, Josefa Canals, Victoria Rivera Moreno, Stefano Renzetti, Victoria Arija\",\"doi\":\"10.1016/j.envpol.2025.125647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prenatal exposure to heavy metals poses risks to fetal brain development, yet the joint effects of these metals remain unclear, with inconsistent findings across statistical models. This study investigates the joint effect of prenatal exposure to cadmium (Cd), nickel (Ni), mercury (Hg), and lead (Pb) on infant neurodevelopment using various statistical approaches. The study included 400 mother-infant pairs. Heavy metal levels were measured in maternal urine samples at the 12th week of gestation, and infant neurodevelopment at 40 days was evaluated by the Bayley Scales of Infant and Toddler Development. Generalized Additive Models (GAM), Multivariable Linear Regression (MLR) with restricted cubic spline (RCS), Bayesian Kernel Machine Regression (BKMR), and Weighted Quantile Sum (WQS) regression were applied to explore the associations between heavy metal exposure and neurodevelopmental outcomes. GAM revealed a significant linear relationship for Cd with cognitive scale (p = 0.045) and expressive language (p = 0.043). MLR confirmed that Cd was negatively associated with both cognitive scale (β = -1.47, p = 0.044) and expressive language (β = -0.32, p = 0.019) and RCS presented a non-linear association between Pb and language scale (p = 0.001). BKMR suggested a negative but non-significant association with most outcomes. WQS indicated a significant adverse effect of metal mixture on expressive language (β = -0.26, 95% CI = -0.44, -0.07), identifying Cd and Ni as the primary contributors. Prenatal exposure to heavy metals have detrimental effects on infant neurodevelopment, especially on language development.\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.envpol.2025.125647\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.125647","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

产前接触重金属对胎儿大脑发育有风险,但这些金属的共同影响尚不清楚,统计模型的结果不一致。本研究利用各种统计方法探讨了产前接触镉(Cd)、镍(Ni)、汞(Hg)和铅(Pb)对婴儿神经发育的共同影响。这项研究包括了400对母婴。在妊娠第12周时测量母体尿液样本中的重金属水平,并在第40天用贝利婴幼儿发育量表评估婴儿的神经发育。应用广义加性模型(GAM)、限制三次样条多变量线性回归(MLR)、贝叶斯核机回归(BKMR)和加权分位数和回归(WQS)探讨重金属暴露与神经发育结果之间的关系。GAM显示Cd与认知量表(p = 0.045)和表达语言(p = 0.043)呈显著的线性关系。MLR证实Cd与认知量表(β = -1.47, p = 0.044)和表达性语言量表(β = -0.32, p = 0.019)呈负相关,RCS与语言量表呈非线性相关(p = 0.001)。BKMR与大多数结果呈负相关,但不显著。WQS表明,金属混合物对表达性语言有显著的不利影响(β = -0.26, 95% CI = -0.44, -0.07), Cd和Ni是主要影响因素。产前接触重金属对婴儿神经发育,尤其是语言发育有不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of prenatal exposure to multiple heavy metals on infant neurodevelopment: a multi-statistical approach

Effects of prenatal exposure to multiple heavy metals on infant neurodevelopment: a multi-statistical approach
Prenatal exposure to heavy metals poses risks to fetal brain development, yet the joint effects of these metals remain unclear, with inconsistent findings across statistical models. This study investigates the joint effect of prenatal exposure to cadmium (Cd), nickel (Ni), mercury (Hg), and lead (Pb) on infant neurodevelopment using various statistical approaches. The study included 400 mother-infant pairs. Heavy metal levels were measured in maternal urine samples at the 12th week of gestation, and infant neurodevelopment at 40 days was evaluated by the Bayley Scales of Infant and Toddler Development. Generalized Additive Models (GAM), Multivariable Linear Regression (MLR) with restricted cubic spline (RCS), Bayesian Kernel Machine Regression (BKMR), and Weighted Quantile Sum (WQS) regression were applied to explore the associations between heavy metal exposure and neurodevelopmental outcomes. GAM revealed a significant linear relationship for Cd with cognitive scale (p = 0.045) and expressive language (p = 0.043). MLR confirmed that Cd was negatively associated with both cognitive scale (β = -1.47, p = 0.044) and expressive language (β = -0.32, p = 0.019) and RCS presented a non-linear association between Pb and language scale (p = 0.001). BKMR suggested a negative but non-significant association with most outcomes. WQS indicated a significant adverse effect of metal mixture on expressive language (β = -0.26, 95% CI = -0.44, -0.07), identifying Cd and Ni as the primary contributors. Prenatal exposure to heavy metals have detrimental effects on infant neurodevelopment, especially on language development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Pollution
Environmental Pollution 环境科学-环境科学
CiteScore
16.00
自引率
6.70%
发文量
2082
审稿时长
2.9 months
期刊介绍: Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health. Subject areas include, but are not limited to: • Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies; • Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change; • Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects; • Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects; • Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest; • New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信