叶片干物质含量在系统发育上是保守的,并且与环境条件有关,尤其是野火活动

IF 7.6 1区 环境科学与生态学 Q1 ECOLOGY
Ecology Letters Pub Date : 2025-01-05 DOI:10.1111/ele.70056
Dachuan Dai, Dongli Yu, Wuchao Gao, George L. W. Perry, Adrian M. Paterson, Chengming You, Shixing Zhou, Zhenfeng Xu, Congde Huang, Dongyu Cao, Timothy J. Curran, Xinglei Cui
{"title":"叶片干物质含量在系统发育上是保守的,并且与环境条件有关,尤其是野火活动","authors":"Dachuan Dai, Dongli Yu, Wuchao Gao, George L. W. Perry, Adrian M. Paterson, Chengming You, Shixing Zhou, Zhenfeng Xu, Congde Huang, Dongyu Cao, Timothy J. Curran, Xinglei Cui","doi":"10.1111/ele.70056","DOIUrl":null,"url":null,"abstract":"Leaf dry matter content (LDMC) is an important determinant of plant flammability. Investigating global patterns of LDMC could provide insights into worldwide plant flammability patterns, informing wildfire management. We characterised global patterns of LDMC across 4074 species from 216 families, revealing that phylogenetic and environmental constraints influence LDMC. LDMC varied across growth forms and taxonomic groups, displaying phylogenetic niche conservatism. Temperature, precipitation, aridity index, soil total nitrogen content and wildfire activity affected LDMC, and the effect of wildfire activity was stronger than other environmental factors across species with postfire regeneration abilities. Such species had higher LDMC, and their LDMC was less phylogenetically conserved and more strongly associated with fire activity. Our results suggest that, although LDMC shows phylogenetic niche conservatism, LDMC is determined by environmental factors, especially wildfire activity. Wildfire has likely acted as a selective pressure towards high LDMC across species that persist through fire using postfire regeneration.","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"37 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leaf Dry Matter Content Is Phylogenetically Conserved and Related to Environmental Conditions, Especially Wildfire Activity\",\"authors\":\"Dachuan Dai, Dongli Yu, Wuchao Gao, George L. W. Perry, Adrian M. Paterson, Chengming You, Shixing Zhou, Zhenfeng Xu, Congde Huang, Dongyu Cao, Timothy J. Curran, Xinglei Cui\",\"doi\":\"10.1111/ele.70056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leaf dry matter content (LDMC) is an important determinant of plant flammability. Investigating global patterns of LDMC could provide insights into worldwide plant flammability patterns, informing wildfire management. We characterised global patterns of LDMC across 4074 species from 216 families, revealing that phylogenetic and environmental constraints influence LDMC. LDMC varied across growth forms and taxonomic groups, displaying phylogenetic niche conservatism. Temperature, precipitation, aridity index, soil total nitrogen content and wildfire activity affected LDMC, and the effect of wildfire activity was stronger than other environmental factors across species with postfire regeneration abilities. Such species had higher LDMC, and their LDMC was less phylogenetically conserved and more strongly associated with fire activity. Our results suggest that, although LDMC shows phylogenetic niche conservatism, LDMC is determined by environmental factors, especially wildfire activity. Wildfire has likely acted as a selective pressure towards high LDMC across species that persist through fire using postfire regeneration.\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/ele.70056\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ele.70056","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

叶片干物质含量(LDMC)是植物可燃性的重要决定因素。研究LDMC的全球模式可以提供全球植物可燃性模式的见解,为野火管理提供信息。我们对来自216科的4074种LDMC的全球模式进行了表征,揭示了系统发育和环境约束对LDMC的影响。LDMC在不同的生长形式和分类群中存在差异,表现出系统发育生态位的保守性。温度、降水、干旱指数、土壤全氮含量和野火活动均影响LDMC,且野火活动的影响在具有火后再生能力的物种中强于其他环境因子。这些物种具有较高的LDMC,并且它们的LDMC在系统发育上的保守性较低,与火活动的相关性更强。我们的研究结果表明,尽管LDMC具有系统发育生态位保守性,但LDMC受环境因素,特别是野火活动的影响。野火可能作为一种选择压力,使高LDMC在物种之间通过火灾后再生持续存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leaf Dry Matter Content Is Phylogenetically Conserved and Related to Environmental Conditions, Especially Wildfire Activity
Leaf dry matter content (LDMC) is an important determinant of plant flammability. Investigating global patterns of LDMC could provide insights into worldwide plant flammability patterns, informing wildfire management. We characterised global patterns of LDMC across 4074 species from 216 families, revealing that phylogenetic and environmental constraints influence LDMC. LDMC varied across growth forms and taxonomic groups, displaying phylogenetic niche conservatism. Temperature, precipitation, aridity index, soil total nitrogen content and wildfire activity affected LDMC, and the effect of wildfire activity was stronger than other environmental factors across species with postfire regeneration abilities. Such species had higher LDMC, and their LDMC was less phylogenetically conserved and more strongly associated with fire activity. Our results suggest that, although LDMC shows phylogenetic niche conservatism, LDMC is determined by environmental factors, especially wildfire activity. Wildfire has likely acted as a selective pressure towards high LDMC across species that persist through fire using postfire regeneration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信