电氧化和过氧化单硫酸盐偶联法高效降解酸性染料废水中有机物的工业潜力

IF 6.9 2区 环境科学与生态学 Q1 ENGINEERING, CHEMICAL
Jun Ma, Jincheng Lu, Yong Liu, Zhiyong Fan
{"title":"电氧化和过氧化单硫酸盐偶联法高效降解酸性染料废水中有机物的工业潜力","authors":"Jun Ma, Jincheng Lu, Yong Liu, Zhiyong Fan","doi":"10.1016/j.psep.2024.12.106","DOIUrl":null,"url":null,"abstract":"Dye manufacturing wastewater contains high sulfuric acid and organic contaminants. Organic contaminants complicate treatment and hinder sulfuric acid recovery, causing environmental issues and resource waste. This study combines electro-oxidation with peroxymonosulfate (EO-PMS) to treat highly acidic (∼10 %) wastewater from Dispersed Violet 93 dye. Degradation was monitored in real time using a modified continuous-flow UV-Vis spectrophotometer. EO-PMS efficiently removes organic compounds, allowing the treated acidic liquid to be reused in dye production. At 16 mA/cm² current density and 10 mM PMS, complete degradation of 300 mL wastewater occurred within 6 minutes, achieving 86 % mineralization. Degradation follows zero-order kinetics, with mass transfer efficiency being a key factor. Experimental variables influencing degradation efficiency were also investigated. Free radical scavenging and electron paramagnetic resonance experiments identified ·OH as the main active species (83.6 %), with minor contributions from SO<ce:inf loc=\"post\">4</ce:inf><ce:sup loc=\"post\">·-</ce:sup> (1.45 %) and others. Experimental data were used to fit the relationships between current intensity, PMS concentration, degradation time, and wastewater disposal costs to assess the economic feasibility of EO-PMS. This study presents an efficient, cost-effective degradation method with real-time monitoring, suitable for industrial-scale treatment and reuse of acidic dye wastewater.","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"20 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrial potential of electro-oxidation and peroxymonosulfate coupling for efficient organic degradation in acidic dye wastewater\",\"authors\":\"Jun Ma, Jincheng Lu, Yong Liu, Zhiyong Fan\",\"doi\":\"10.1016/j.psep.2024.12.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dye manufacturing wastewater contains high sulfuric acid and organic contaminants. Organic contaminants complicate treatment and hinder sulfuric acid recovery, causing environmental issues and resource waste. This study combines electro-oxidation with peroxymonosulfate (EO-PMS) to treat highly acidic (∼10 %) wastewater from Dispersed Violet 93 dye. Degradation was monitored in real time using a modified continuous-flow UV-Vis spectrophotometer. EO-PMS efficiently removes organic compounds, allowing the treated acidic liquid to be reused in dye production. At 16 mA/cm² current density and 10 mM PMS, complete degradation of 300 mL wastewater occurred within 6 minutes, achieving 86 % mineralization. Degradation follows zero-order kinetics, with mass transfer efficiency being a key factor. Experimental variables influencing degradation efficiency were also investigated. Free radical scavenging and electron paramagnetic resonance experiments identified ·OH as the main active species (83.6 %), with minor contributions from SO<ce:inf loc=\\\"post\\\">4</ce:inf><ce:sup loc=\\\"post\\\">·-</ce:sup> (1.45 %) and others. Experimental data were used to fit the relationships between current intensity, PMS concentration, degradation time, and wastewater disposal costs to assess the economic feasibility of EO-PMS. This study presents an efficient, cost-effective degradation method with real-time monitoring, suitable for industrial-scale treatment and reuse of acidic dye wastewater.\",\"PeriodicalId\":20743,\"journal\":{\"name\":\"Process Safety and Environmental Protection\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety and Environmental Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.psep.2024.12.106\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.psep.2024.12.106","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Industrial potential of electro-oxidation and peroxymonosulfate coupling for efficient organic degradation in acidic dye wastewater
Dye manufacturing wastewater contains high sulfuric acid and organic contaminants. Organic contaminants complicate treatment and hinder sulfuric acid recovery, causing environmental issues and resource waste. This study combines electro-oxidation with peroxymonosulfate (EO-PMS) to treat highly acidic (∼10 %) wastewater from Dispersed Violet 93 dye. Degradation was monitored in real time using a modified continuous-flow UV-Vis spectrophotometer. EO-PMS efficiently removes organic compounds, allowing the treated acidic liquid to be reused in dye production. At 16 mA/cm² current density and 10 mM PMS, complete degradation of 300 mL wastewater occurred within 6 minutes, achieving 86 % mineralization. Degradation follows zero-order kinetics, with mass transfer efficiency being a key factor. Experimental variables influencing degradation efficiency were also investigated. Free radical scavenging and electron paramagnetic resonance experiments identified ·OH as the main active species (83.6 %), with minor contributions from SO4·- (1.45 %) and others. Experimental data were used to fit the relationships between current intensity, PMS concentration, degradation time, and wastewater disposal costs to assess the economic feasibility of EO-PMS. This study presents an efficient, cost-effective degradation method with real-time monitoring, suitable for industrial-scale treatment and reuse of acidic dye wastewater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Process Safety and Environmental Protection
Process Safety and Environmental Protection 环境科学-工程:化工
CiteScore
11.40
自引率
15.40%
发文量
929
审稿时长
8.0 months
期刊介绍: The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice. PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers. PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信