Peiyun She , Shuhang Ye , Yiming Yao , Deju Zhu , Cong Lu
{"title":"纺织增强工程胶凝复合材料(TR-ECC)细观力学模型及性能驱动设计策略","authors":"Peiyun She , Shuhang Ye , Yiming Yao , Deju Zhu , Cong Lu","doi":"10.1016/j.cemconcomp.2025.105919","DOIUrl":null,"url":null,"abstract":"<div><div>Textile reinforced engineered cementitious composite (TR-ECC) is a cementitious composite reinforced with continuous textiles and short random fibers, characterized by high tensile strength and strain capacity due to the successive formation of multiple fine cracks. Various tensile failure modes of TR-ECC have been extensively observed in experimental studies, while clear classification of these failure modes and their underlying mechanisms are to be explored. In this study, the novel established numerical model explains the causes of different tensile failure modes of TR-ECC based on the physical interactions among fibers, textiles, and the matrix. In the model, the tensile behavior of TR-ECC was innovatively simulated through a displacement-controlled loading method, while the stress field in different components was analyzed considering five phases: textiles, short fibers, matrix, textile/matrix interface, and fiber/matrix interface. With the proposed model, two distinct tensile failure modes (modes I and II) were identified. Simulated TR-ECC stress-strain curves (OP-I and OP-II) of both failure modes were acquired with adjustments of several key micro-properties on the same base curve under the guidance of the proposed model. OP-I achieved a tensile strength exceeding 9.5 MPa and maintained a strain capacity above 2 % due to secondary hardening after textile rupture, while OP-II exhibited stable multiple cracking with a lower peak strength of 7.2 MPa but a higher strain capacity exceeding 6 %. These two specific optimization strategies were proposed based on the model to address different material performance requirements, providing a framework for performance-driven design of TR-ECC to ensure optimal mechanical performance and durability.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"157 ","pages":"Article 105919"},"PeriodicalIF":10.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micromechanical model and performance-driven design strategy for textile reinforced engineered cementitious composite (TR-ECC)\",\"authors\":\"Peiyun She , Shuhang Ye , Yiming Yao , Deju Zhu , Cong Lu\",\"doi\":\"10.1016/j.cemconcomp.2025.105919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Textile reinforced engineered cementitious composite (TR-ECC) is a cementitious composite reinforced with continuous textiles and short random fibers, characterized by high tensile strength and strain capacity due to the successive formation of multiple fine cracks. Various tensile failure modes of TR-ECC have been extensively observed in experimental studies, while clear classification of these failure modes and their underlying mechanisms are to be explored. In this study, the novel established numerical model explains the causes of different tensile failure modes of TR-ECC based on the physical interactions among fibers, textiles, and the matrix. In the model, the tensile behavior of TR-ECC was innovatively simulated through a displacement-controlled loading method, while the stress field in different components was analyzed considering five phases: textiles, short fibers, matrix, textile/matrix interface, and fiber/matrix interface. With the proposed model, two distinct tensile failure modes (modes I and II) were identified. Simulated TR-ECC stress-strain curves (OP-I and OP-II) of both failure modes were acquired with adjustments of several key micro-properties on the same base curve under the guidance of the proposed model. OP-I achieved a tensile strength exceeding 9.5 MPa and maintained a strain capacity above 2 % due to secondary hardening after textile rupture, while OP-II exhibited stable multiple cracking with a lower peak strength of 7.2 MPa but a higher strain capacity exceeding 6 %. These two specific optimization strategies were proposed based on the model to address different material performance requirements, providing a framework for performance-driven design of TR-ECC to ensure optimal mechanical performance and durability.</div></div>\",\"PeriodicalId\":9865,\"journal\":{\"name\":\"Cement & concrete composites\",\"volume\":\"157 \",\"pages\":\"Article 105919\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement & concrete composites\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958946525000010\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946525000010","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Micromechanical model and performance-driven design strategy for textile reinforced engineered cementitious composite (TR-ECC)
Textile reinforced engineered cementitious composite (TR-ECC) is a cementitious composite reinforced with continuous textiles and short random fibers, characterized by high tensile strength and strain capacity due to the successive formation of multiple fine cracks. Various tensile failure modes of TR-ECC have been extensively observed in experimental studies, while clear classification of these failure modes and their underlying mechanisms are to be explored. In this study, the novel established numerical model explains the causes of different tensile failure modes of TR-ECC based on the physical interactions among fibers, textiles, and the matrix. In the model, the tensile behavior of TR-ECC was innovatively simulated through a displacement-controlled loading method, while the stress field in different components was analyzed considering five phases: textiles, short fibers, matrix, textile/matrix interface, and fiber/matrix interface. With the proposed model, two distinct tensile failure modes (modes I and II) were identified. Simulated TR-ECC stress-strain curves (OP-I and OP-II) of both failure modes were acquired with adjustments of several key micro-properties on the same base curve under the guidance of the proposed model. OP-I achieved a tensile strength exceeding 9.5 MPa and maintained a strain capacity above 2 % due to secondary hardening after textile rupture, while OP-II exhibited stable multiple cracking with a lower peak strength of 7.2 MPa but a higher strain capacity exceeding 6 %. These two specific optimization strategies were proposed based on the model to address different material performance requirements, providing a framework for performance-driven design of TR-ECC to ensure optimal mechanical performance and durability.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.