Kar Fei Chan , Yazid Yaakob , Masaki Tanemura , Mohd Zamri Mohd Yusop
{"title":"Mn含量对Zn-Mn/CNF立方体铸造合金显微硬度影响的三维形貌研究","authors":"Kar Fei Chan , Yazid Yaakob , Masaki Tanemura , Mohd Zamri Mohd Yusop","doi":"10.1016/j.jallcom.2025.178486","DOIUrl":null,"url":null,"abstract":"<div><div>Zinc (Zn) is a unique biodegradable material that shows promise in terms of acceptable biomechanical properties, lower melting energy consumption, and improved recyclability. These characteristics provide fresh perspectives for producing medical implants in large quantities. However, coarsened microstructures are usually present in cast pure Zn, which leads to insufficient synergistic control over mechanical hardness. This work involved the fabrication of a zinc-manganese with carbon nanofiber alloy (Zn-Mn/CNF) using melt-casting under ambient conditions. The molten mixture was cast into a 10 mm × 10 mm mould for further characterization. The XRD investigation indicated the presence of Zn and Mn<sub>0.02</sub>Zn<sub>1.98</sub> crystals in the fabricated alloy, which enhanced the microhardness. The microstructure of the as-cast alloy consisted of columnar grains, with no equiaxed grains observed. The combining effect of CNF and Mn reduces the size of columnar grains from 1.40 to 0.44 mm² via continuous dynamic recrystallization (CDRX). The enhancement of microhardness by approximately 17 % was attributed to the solid solution strengthening effect. The microhardness across the columnar grain was observed, and it resulted from the large gradient structure and the Hall-Petch softening effect. This research elucidated the crystallographic, microstructural, and microhardness characteristics of small-volume casting Zn alloy, offering theoretical foundations for its application in medical implants.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1012 ","pages":"Article 178486"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Mn content on microhardness in Zn-Mn/CNF cubical cast alloys: A 3D topographical study\",\"authors\":\"Kar Fei Chan , Yazid Yaakob , Masaki Tanemura , Mohd Zamri Mohd Yusop\",\"doi\":\"10.1016/j.jallcom.2025.178486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zinc (Zn) is a unique biodegradable material that shows promise in terms of acceptable biomechanical properties, lower melting energy consumption, and improved recyclability. These characteristics provide fresh perspectives for producing medical implants in large quantities. However, coarsened microstructures are usually present in cast pure Zn, which leads to insufficient synergistic control over mechanical hardness. This work involved the fabrication of a zinc-manganese with carbon nanofiber alloy (Zn-Mn/CNF) using melt-casting under ambient conditions. The molten mixture was cast into a 10 mm × 10 mm mould for further characterization. The XRD investigation indicated the presence of Zn and Mn<sub>0.02</sub>Zn<sub>1.98</sub> crystals in the fabricated alloy, which enhanced the microhardness. The microstructure of the as-cast alloy consisted of columnar grains, with no equiaxed grains observed. The combining effect of CNF and Mn reduces the size of columnar grains from 1.40 to 0.44 mm² via continuous dynamic recrystallization (CDRX). The enhancement of microhardness by approximately 17 % was attributed to the solid solution strengthening effect. The microhardness across the columnar grain was observed, and it resulted from the large gradient structure and the Hall-Petch softening effect. This research elucidated the crystallographic, microstructural, and microhardness characteristics of small-volume casting Zn alloy, offering theoretical foundations for its application in medical implants.</div></div>\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"1012 \",\"pages\":\"Article 178486\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925838825000441\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825000441","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Influence of Mn content on microhardness in Zn-Mn/CNF cubical cast alloys: A 3D topographical study
Zinc (Zn) is a unique biodegradable material that shows promise in terms of acceptable biomechanical properties, lower melting energy consumption, and improved recyclability. These characteristics provide fresh perspectives for producing medical implants in large quantities. However, coarsened microstructures are usually present in cast pure Zn, which leads to insufficient synergistic control over mechanical hardness. This work involved the fabrication of a zinc-manganese with carbon nanofiber alloy (Zn-Mn/CNF) using melt-casting under ambient conditions. The molten mixture was cast into a 10 mm × 10 mm mould for further characterization. The XRD investigation indicated the presence of Zn and Mn0.02Zn1.98 crystals in the fabricated alloy, which enhanced the microhardness. The microstructure of the as-cast alloy consisted of columnar grains, with no equiaxed grains observed. The combining effect of CNF and Mn reduces the size of columnar grains from 1.40 to 0.44 mm² via continuous dynamic recrystallization (CDRX). The enhancement of microhardness by approximately 17 % was attributed to the solid solution strengthening effect. The microhardness across the columnar grain was observed, and it resulted from the large gradient structure and the Hall-Petch softening effect. This research elucidated the crystallographic, microstructural, and microhardness characteristics of small-volume casting Zn alloy, offering theoretical foundations for its application in medical implants.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.