新型的mof衍生的金属氧化物In2O3/CoOOH异质结纳米结构的性能增强

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Qi Liu , Jiongjiang Liu , Hongda Liu , Xiaomeng Zheng , Qingjiang Pan , Guo Zhang
{"title":"新型的mof衍生的金属氧化物In2O3/CoOOH异质结纳米结构的性能增强","authors":"Qi Liu ,&nbsp;Jiongjiang Liu ,&nbsp;Hongda Liu ,&nbsp;Xiaomeng Zheng ,&nbsp;Qingjiang Pan ,&nbsp;Guo Zhang","doi":"10.1016/j.apsusc.2025.162304","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we first synthesize the metal–organic framework (MOF) derived In<sub>2</sub>O<sub>3</sub> nanotubes and Co-MOF precursors, then etch them with sodium hydroxide (NaOH) solution to prepare the In<sub>2</sub>O<sub>3</sub>/CoOOH composite sensing material. The structure and morphology were studied using various characterization methods such as XRD, FT-IR, SEM, TEM and XPS. The response value (<em>R<sub>g</sub></em>/<em>R<sub>a</sub></em>, <em>R<sub>g</sub></em> and <em>R<sub>a</sub></em> being the resistances in tested gas and air) of In<sub>2</sub>O<sub>3</sub>/CoOOH composite to 10 ppm NO<sub>x</sub> is 84, which is about 2.5 times that of pure In<sub>2</sub>O<sub>3</sub> at room temperature (RT). Meanwhile, the response/recovery time (the time to achieve 90 % of the entire resistance change) of the In<sub>2</sub>O<sub>3</sub>/CoOOH composite (141/78 s) is faster than that of pure In<sub>2</sub>O<sub>3</sub> (179/86 s). The enhancement of gas sensing performance of the In<sub>2</sub>O<sub>3</sub>/CoOOH composite is attributed to the high oxygen vacancy and adsorbed oxygen content, large specific surface area and the formation of the heterostructures. The adsorption mechanism of NO<sub>x</sub> on the surface of the In<sub>2</sub>O<sub>3</sub>/CoOOH composite was studied using in-situ infrared spectroscopy.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"687 ","pages":"Article 162304"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The novel NOx sensing material MOF-derived metal oxides In2O3/CoOOH heterojunction nanostructures performance enhancement\",\"authors\":\"Qi Liu ,&nbsp;Jiongjiang Liu ,&nbsp;Hongda Liu ,&nbsp;Xiaomeng Zheng ,&nbsp;Qingjiang Pan ,&nbsp;Guo Zhang\",\"doi\":\"10.1016/j.apsusc.2025.162304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we first synthesize the metal–organic framework (MOF) derived In<sub>2</sub>O<sub>3</sub> nanotubes and Co-MOF precursors, then etch them with sodium hydroxide (NaOH) solution to prepare the In<sub>2</sub>O<sub>3</sub>/CoOOH composite sensing material. The structure and morphology were studied using various characterization methods such as XRD, FT-IR, SEM, TEM and XPS. The response value (<em>R<sub>g</sub></em>/<em>R<sub>a</sub></em>, <em>R<sub>g</sub></em> and <em>R<sub>a</sub></em> being the resistances in tested gas and air) of In<sub>2</sub>O<sub>3</sub>/CoOOH composite to 10 ppm NO<sub>x</sub> is 84, which is about 2.5 times that of pure In<sub>2</sub>O<sub>3</sub> at room temperature (RT). Meanwhile, the response/recovery time (the time to achieve 90 % of the entire resistance change) of the In<sub>2</sub>O<sub>3</sub>/CoOOH composite (141/78 s) is faster than that of pure In<sub>2</sub>O<sub>3</sub> (179/86 s). The enhancement of gas sensing performance of the In<sub>2</sub>O<sub>3</sub>/CoOOH composite is attributed to the high oxygen vacancy and adsorbed oxygen content, large specific surface area and the formation of the heterostructures. The adsorption mechanism of NO<sub>x</sub> on the surface of the In<sub>2</sub>O<sub>3</sub>/CoOOH composite was studied using in-situ infrared spectroscopy.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"687 \",\"pages\":\"Article 162304\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225000170\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225000170","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文首先合成了金属有机骨架(MOF)衍生的In2O3纳米管和Co-MOF前驱体,然后用氢氧化钠(NaOH)溶液对其进行蚀刻,制备了In2O3/CoOOH复合传感材料。采用XRD、FT-IR、SEM、TEM和XPS等表征方法对其结构和形貌进行了研究。In2O3/CoOOH复合材料对10 ppm NOx的响应值(Rg/Ra, Rg和Ra为被测气体和空气中的电阻)为84,约为室温下纯In2O3的2.5倍。同时,In2O3/CoOOH复合材料(141/78 s)的响应/恢复时间(达到整个电阻变化的90% %的时间)比纯In2O3(179/86 s)快。In2O3/CoOOH复合材料气敏性能的增强主要归因于高氧空位和吸附氧含量、大比表面积和异质结构的形成。采用原位红外光谱法研究了NOx在In2O3/CoOOH复合材料表面的吸附机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The novel NOx sensing material MOF-derived metal oxides In2O3/CoOOH heterojunction nanostructures performance enhancement

The novel NOx sensing material MOF-derived metal oxides In2O3/CoOOH heterojunction nanostructures performance enhancement

The novel NOx sensing material MOF-derived metal oxides In2O3/CoOOH heterojunction nanostructures performance enhancement
In this paper, we first synthesize the metal–organic framework (MOF) derived In2O3 nanotubes and Co-MOF precursors, then etch them with sodium hydroxide (NaOH) solution to prepare the In2O3/CoOOH composite sensing material. The structure and morphology were studied using various characterization methods such as XRD, FT-IR, SEM, TEM and XPS. The response value (Rg/Ra, Rg and Ra being the resistances in tested gas and air) of In2O3/CoOOH composite to 10 ppm NOx is 84, which is about 2.5 times that of pure In2O3 at room temperature (RT). Meanwhile, the response/recovery time (the time to achieve 90 % of the entire resistance change) of the In2O3/CoOOH composite (141/78 s) is faster than that of pure In2O3 (179/86 s). The enhancement of gas sensing performance of the In2O3/CoOOH composite is attributed to the high oxygen vacancy and adsorbed oxygen content, large specific surface area and the formation of the heterostructures. The adsorption mechanism of NOx on the surface of the In2O3/CoOOH composite was studied using in-situ infrared spectroscopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信