一种0.5 v 125mhz 256kb 22nm SRAM,具有10aj /bit的有效能量和10pw /bit的关机功率

IF 5.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jinn-Shyan Wang;Chien-Tung Liu;Yu-Chuan Hou
{"title":"一种0.5 v 125mhz 256kb 22nm SRAM,具有10aj /bit的有效能量和10pw /bit的关机功率","authors":"Jinn-Shyan Wang;Chien-Tung Liu;Yu-Chuan Hou","doi":"10.1109/JSSC.2024.3520631","DOIUrl":null,"url":null,"abstract":"Conventional low-voltage (LV) static random access memories (SRAMs) utilizing separate read-and-write assist circuits sacrifice access speed too much, leading to poor energy efficiency. Overlaying additional assist circuits to enable power-saving modes can exacerbate speed loss and energy inefficiency. This work proposes a coordinated read-write-hold-retention-shutdown (SD) assist circuit design for SRAMs to improve speed at low VDD and reduce leakage current in active and power-saving modes. This leads to overall power reduction and enhanced energy efficiency. The implemented 22-nm 256-Kb SRAM can operate down to 0.45 V, with the minimum energy point at 0.5 V. At 0.5 V, TT corner, and <inline-formula> <tex-math>$25~{^{\\circ }}$ </tex-math></inline-formula>C, the measured maximum frequency (<inline-formula> <tex-math>$f_{\\max }$ </tex-math></inline-formula>) is 125 MHz with a 10 aJ/bit active energy, representing a 6.25 higher frequency with a 91% energy reduction, compared to the state-of-the-art 0.5-V SRAM in 28-nm bulk CMOS. The SRAM has a 12 pW/bit deep-sleep power and a 10 pW/bit SD power at 0.5 V.","PeriodicalId":13129,"journal":{"name":"IEEE Journal of Solid-state Circuits","volume":"60 8","pages":"3043-3052"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 0.5-V 125-MHz 256-Kb 22-nm SRAM With 10-aJ/bit Active Energy and 10-pW/bit Shutdown Power\",\"authors\":\"Jinn-Shyan Wang;Chien-Tung Liu;Yu-Chuan Hou\",\"doi\":\"10.1109/JSSC.2024.3520631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional low-voltage (LV) static random access memories (SRAMs) utilizing separate read-and-write assist circuits sacrifice access speed too much, leading to poor energy efficiency. Overlaying additional assist circuits to enable power-saving modes can exacerbate speed loss and energy inefficiency. This work proposes a coordinated read-write-hold-retention-shutdown (SD) assist circuit design for SRAMs to improve speed at low VDD and reduce leakage current in active and power-saving modes. This leads to overall power reduction and enhanced energy efficiency. The implemented 22-nm 256-Kb SRAM can operate down to 0.45 V, with the minimum energy point at 0.5 V. At 0.5 V, TT corner, and <inline-formula> <tex-math>$25~{^{\\\\circ }}$ </tex-math></inline-formula>C, the measured maximum frequency (<inline-formula> <tex-math>$f_{\\\\max }$ </tex-math></inline-formula>) is 125 MHz with a 10 aJ/bit active energy, representing a 6.25 higher frequency with a 91% energy reduction, compared to the state-of-the-art 0.5-V SRAM in 28-nm bulk CMOS. The SRAM has a 12 pW/bit deep-sleep power and a 10 pW/bit SD power at 0.5 V.\",\"PeriodicalId\":13129,\"journal\":{\"name\":\"IEEE Journal of Solid-state Circuits\",\"volume\":\"60 8\",\"pages\":\"3043-3052\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Solid-state Circuits\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10820858/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Solid-state Circuits","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10820858/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

传统的低压(LV)静态随机存取存储器(sram)利用独立的读写辅助电路牺牲了访问速度,导致能源效率低下。覆盖额外的辅助电路以启用节能模式可能会加剧速度损失和能源效率低下。这项工作提出了一种用于sram的协调读写保持保持关闭(SD)辅助电路设计,以提高低VDD下的速度,并减少有源和节能模式下的漏电流。这导致整体功率降低和提高能源效率。所实现的22nm 256kb SRAM可以工作在0.45 V,最小能量点为0.5 V。在0.5 V, TT角和$25~{^{\circ}}$ C下,测量到的最大频率($f_{\max}$)为125 MHz,有功能量为10 aJ/bit,与最先进的28纳米体CMOS 0.5 V SRAM相比,频率提高了6.25,能量降低了91%。SRAM具有12pw /bit的深度睡眠功率和10pw /bit的0.5 V SD功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 0.5-V 125-MHz 256-Kb 22-nm SRAM With 10-aJ/bit Active Energy and 10-pW/bit Shutdown Power
Conventional low-voltage (LV) static random access memories (SRAMs) utilizing separate read-and-write assist circuits sacrifice access speed too much, leading to poor energy efficiency. Overlaying additional assist circuits to enable power-saving modes can exacerbate speed loss and energy inefficiency. This work proposes a coordinated read-write-hold-retention-shutdown (SD) assist circuit design for SRAMs to improve speed at low VDD and reduce leakage current in active and power-saving modes. This leads to overall power reduction and enhanced energy efficiency. The implemented 22-nm 256-Kb SRAM can operate down to 0.45 V, with the minimum energy point at 0.5 V. At 0.5 V, TT corner, and $25~{^{\circ }}$ C, the measured maximum frequency ( $f_{\max }$ ) is 125 MHz with a 10 aJ/bit active energy, representing a 6.25 higher frequency with a 91% energy reduction, compared to the state-of-the-art 0.5-V SRAM in 28-nm bulk CMOS. The SRAM has a 12 pW/bit deep-sleep power and a 10 pW/bit SD power at 0.5 V.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Solid-state Circuits
IEEE Journal of Solid-state Circuits 工程技术-工程:电子与电气
CiteScore
11.00
自引率
20.40%
发文量
351
审稿时长
3-6 weeks
期刊介绍: The IEEE Journal of Solid-State Circuits publishes papers each month in the broad area of solid-state circuits with particular emphasis on transistor-level design of integrated circuits. It also provides coverage of topics such as circuits modeling, technology, systems design, layout, and testing that relate directly to IC design. Integrated circuits and VLSI are of principal interest; material related to discrete circuit design is seldom published. Experimental verification is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信