用于监测肾修复中坏死细胞的细胞器动力学和细胞内水分异质性的可交换SIM探针

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Youbo Lai, Tengteng Zhang, Ling Huang, Andrey S. Klymchenko, Weiying Lin
{"title":"用于监测肾修复中坏死细胞的细胞器动力学和细胞内水分异质性的可交换SIM探针","authors":"Youbo Lai, Tengteng Zhang, Ling Huang, Andrey S. Klymchenko, Weiying Lin","doi":"10.1073/pnas.2402348121","DOIUrl":null,"url":null,"abstract":"Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale. In this work, our results reveal mitochondria as the first organelle to undergo morphological changes through swelling, fission, and fusion in cell necrosis, leading to the rupture of the endoplasmic reticulum (ER) sheet adhered to the mitochondria. Meanwhile, the ER tubules are then reconstructed by stretching and fusion of autophagosomes. Moreover, APBD allows us to directly visualize spatially resolved distribution of biomembranes vs. water inside single mammalian cells. Our findings show that the renal ischemia–reperfusion injury (IRI) model results in the increased biomembrane to cytoplasmic water ratio in the tissue. This reveals intracellular water heterogeneity between the nucleus and the cytoplasm during the IRI process. Overall, this study presents a strategy for development of the molecular tools for cellular water heterogeneity and organelle dynamics.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"11 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exchangeable SIM probe for monitoring organellar dynamics of necrosis cells and intracellular water heterogeneity in kidney repair\",\"authors\":\"Youbo Lai, Tengteng Zhang, Ling Huang, Andrey S. Klymchenko, Weiying Lin\",\"doi\":\"10.1073/pnas.2402348121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale. In this work, our results reveal mitochondria as the first organelle to undergo morphological changes through swelling, fission, and fusion in cell necrosis, leading to the rupture of the endoplasmic reticulum (ER) sheet adhered to the mitochondria. Meanwhile, the ER tubules are then reconstructed by stretching and fusion of autophagosomes. Moreover, APBD allows us to directly visualize spatially resolved distribution of biomembranes vs. water inside single mammalian cells. Our findings show that the renal ischemia–reperfusion injury (IRI) model results in the increased biomembrane to cytoplasmic water ratio in the tissue. This reveals intracellular water heterogeneity between the nucleus and the cytoplasm during the IRI process. Overall, this study presents a strategy for development of the molecular tools for cellular water heterogeneity and organelle dynamics.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2402348121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2402348121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

实时监测亚细胞细胞器动力学和精确评估活细胞的膜非均质性对于研究基本生物学机制和全面了解细胞过程具有重要意义。然而,目前仍然缺乏实现这些目的的有效工具。在此,我们提出了一种开发可交换水传感probeAPBD的策略,用于在纳米尺度上使用结构照明显微镜对细胞膜结合细胞器形态的动态进行延时成像。在这项工作中,我们的研究结果表明,线粒体是细胞坏死中第一个经历形态变化的细胞器,通过肿胀、裂变和融合,导致粘附在线粒体上的内质网(ER)片破裂。同时,内质网小管通过自噬体的拉伸和融合重建。此外,APBD允许我们直接可视化单个哺乳动物细胞内生物膜与水的空间分辨分布。我们的研究结果表明,肾缺血再灌注损伤(IRI)模型导致组织中生物膜与细胞质水比增加。这揭示了IRI过程中细胞核和细胞质之间的细胞内水分不均一性。总的来说,本研究提出了一个发展细胞水非均质性和细胞器动力学的分子工具的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An exchangeable SIM probe for monitoring organellar dynamics of necrosis cells and intracellular water heterogeneity in kidney repair
Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale. In this work, our results reveal mitochondria as the first organelle to undergo morphological changes through swelling, fission, and fusion in cell necrosis, leading to the rupture of the endoplasmic reticulum (ER) sheet adhered to the mitochondria. Meanwhile, the ER tubules are then reconstructed by stretching and fusion of autophagosomes. Moreover, APBD allows us to directly visualize spatially resolved distribution of biomembranes vs. water inside single mammalian cells. Our findings show that the renal ischemia–reperfusion injury (IRI) model results in the increased biomembrane to cytoplasmic water ratio in the tissue. This reveals intracellular water heterogeneity between the nucleus and the cytoplasm during the IRI process. Overall, this study presents a strategy for development of the molecular tools for cellular water heterogeneity and organelle dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信