Pedro Goes Nogueira-de-Sá, José Eduardo Pereira Wilken Bicudo, José Guilherme Chaui-Berlinck
{"title":"哺乳动物肾元的熵产和水分保存。","authors":"Pedro Goes Nogueira-de-Sá, José Eduardo Pereira Wilken Bicudo, José Guilherme Chaui-Berlinck","doi":"10.1007/s00360-024-01599-5","DOIUrl":null,"url":null,"abstract":"<p><p>During the transition from fresh waters to terrestrial habitats, significant adaptive changes occurred in kidney function of vertebrates to cope with varying osmotic challenges. We investigated the mechanisms driving water conservation in the mammalian nephron, focusing on the relative contributions of active ion transport and Starling forces. We constructed a thermodynamic model to estimate the entropy generation associated with different processes within the nephron, and analyzed their relative importance in urine formation. We demonstrate that active ionic reabsorption exerts a pressure above 15,000 torr, a value more than 500 times greater than Starling forces. The entropy generation of the reabsorption process is found to be 20-fold higher than that of renal blood perfusion. These findings imply that the evolutionary history of vertebrates, particularly terrestrial mammals, has shaped the renal architecture to prioritize water conservation by means of an entropically costly process. This approach to the nephron function provides insights into the physiological adaptations of terrestrial vertebrates to conserve water and sheds light on the intricate interplay between environmental conditions and evolutionary responses in renal physiology.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"81-89"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy generation and water conservation in the mammalian nephron.\",\"authors\":\"Pedro Goes Nogueira-de-Sá, José Eduardo Pereira Wilken Bicudo, José Guilherme Chaui-Berlinck\",\"doi\":\"10.1007/s00360-024-01599-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During the transition from fresh waters to terrestrial habitats, significant adaptive changes occurred in kidney function of vertebrates to cope with varying osmotic challenges. We investigated the mechanisms driving water conservation in the mammalian nephron, focusing on the relative contributions of active ion transport and Starling forces. We constructed a thermodynamic model to estimate the entropy generation associated with different processes within the nephron, and analyzed their relative importance in urine formation. We demonstrate that active ionic reabsorption exerts a pressure above 15,000 torr, a value more than 500 times greater than Starling forces. The entropy generation of the reabsorption process is found to be 20-fold higher than that of renal blood perfusion. These findings imply that the evolutionary history of vertebrates, particularly terrestrial mammals, has shaped the renal architecture to prioritize water conservation by means of an entropically costly process. This approach to the nephron function provides insights into the physiological adaptations of terrestrial vertebrates to conserve water and sheds light on the intricate interplay between environmental conditions and evolutionary responses in renal physiology.</p>\",\"PeriodicalId\":56033,\"journal\":{\"name\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"volume\":\" \",\"pages\":\"81-89\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00360-024-01599-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-024-01599-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Entropy generation and water conservation in the mammalian nephron.
During the transition from fresh waters to terrestrial habitats, significant adaptive changes occurred in kidney function of vertebrates to cope with varying osmotic challenges. We investigated the mechanisms driving water conservation in the mammalian nephron, focusing on the relative contributions of active ion transport and Starling forces. We constructed a thermodynamic model to estimate the entropy generation associated with different processes within the nephron, and analyzed their relative importance in urine formation. We demonstrate that active ionic reabsorption exerts a pressure above 15,000 torr, a value more than 500 times greater than Starling forces. The entropy generation of the reabsorption process is found to be 20-fold higher than that of renal blood perfusion. These findings imply that the evolutionary history of vertebrates, particularly terrestrial mammals, has shaped the renal architecture to prioritize water conservation by means of an entropically costly process. This approach to the nephron function provides insights into the physiological adaptations of terrestrial vertebrates to conserve water and sheds light on the intricate interplay between environmental conditions and evolutionary responses in renal physiology.
期刊介绍:
The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.