顶叶和腹内侧前额叶皮层在扩展训练中出现的分类表征

IF 4.4 2区 医学 Q1 NEUROSCIENCES
Zhiya Liu, Yitao Zhang, Chudan Wen, Jingzhao Yuan, Jingxian Zhang, Carol A Seger
{"title":"顶叶和腹内侧前额叶皮层在扩展训练中出现的分类表征","authors":"Zhiya Liu, Yitao Zhang, Chudan Wen, Jingzhao Yuan, Jingxian Zhang, Carol A Seger","doi":"10.1523/JNEUROSCI.1315-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>How do the neural representations underlying category learning change as skill develops? We examined perceptual category learning using a prototype learning task known to recruit a corticostriatal system including the posterior striatum, motor cortex, visual cortex, and the intraparietal sulcus (IPS). Male and female human participants practiced categorizing stimuli as category members or nonmembers (A versus not-A) across three days, with fMRI data collected at the beginning and end. Univariate analyses found that corticostriatal activity in regions associated with habitual instrumental learning were recruited across both sessions, but activity in regions associated with goal-directed instrumental learning decreased from day 1 to day 3. Multivoxel Pattern Analysis (MVPA) indicated that after training the trained category could be more easily decoded from the IPS when compared with a novel category. Representational Similarity Analysis (RSA) showed development of category representations in IPS and motor cortex. In addition, RSA revealed evidence for category-related representations including prototype representation in the ventromedial prefrontal cortex which may reflect parallel development of schematic memory for the category structure. Overall, the results converge to show how performance of category decisions and representations of the category structure emerge after extensive training across the corticostriatal system underlying perceptual category learning.<b>Significance Statement</b> We compared activity during initial category learning with that after an extended training session and used multivariate methods to characterize representational changes. We found that representations changed in the intraparietal sulcus (IPS) and ventromedial prefrontal cortex (VMPFC). The IPS became sensitive to category membership and distinguished between the trained category and a novel category. The VMPFC showed sensitivity to the prototype as well as other category-related features. In addition, motor cortex coded for category membership decisions and making associated motor responses. Overall our results go beyond previous research that established what brain regions are recruited during the initial phases of perceptual category learning to characterize how category representations emerge as participants become highly skilled.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence of categorical representations in parietal and ventromedial prefrontal cortex across extended training.\",\"authors\":\"Zhiya Liu, Yitao Zhang, Chudan Wen, Jingzhao Yuan, Jingxian Zhang, Carol A Seger\",\"doi\":\"10.1523/JNEUROSCI.1315-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>How do the neural representations underlying category learning change as skill develops? We examined perceptual category learning using a prototype learning task known to recruit a corticostriatal system including the posterior striatum, motor cortex, visual cortex, and the intraparietal sulcus (IPS). Male and female human participants practiced categorizing stimuli as category members or nonmembers (A versus not-A) across three days, with fMRI data collected at the beginning and end. Univariate analyses found that corticostriatal activity in regions associated with habitual instrumental learning were recruited across both sessions, but activity in regions associated with goal-directed instrumental learning decreased from day 1 to day 3. Multivoxel Pattern Analysis (MVPA) indicated that after training the trained category could be more easily decoded from the IPS when compared with a novel category. Representational Similarity Analysis (RSA) showed development of category representations in IPS and motor cortex. In addition, RSA revealed evidence for category-related representations including prototype representation in the ventromedial prefrontal cortex which may reflect parallel development of schematic memory for the category structure. Overall, the results converge to show how performance of category decisions and representations of the category structure emerge after extensive training across the corticostriatal system underlying perceptual category learning.<b>Significance Statement</b> We compared activity during initial category learning with that after an extended training session and used multivariate methods to characterize representational changes. We found that representations changed in the intraparietal sulcus (IPS) and ventromedial prefrontal cortex (VMPFC). The IPS became sensitive to category membership and distinguished between the trained category and a novel category. The VMPFC showed sensitivity to the prototype as well as other category-related features. In addition, motor cortex coded for category membership decisions and making associated motor responses. Overall our results go beyond previous research that established what brain regions are recruited during the initial phases of perceptual category learning to characterize how category representations emerge as participants become highly skilled.</p>\",\"PeriodicalId\":50114,\"journal\":{\"name\":\"Journal of Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/JNEUROSCI.1315-24.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1315-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergence of categorical representations in parietal and ventromedial prefrontal cortex across extended training.

How do the neural representations underlying category learning change as skill develops? We examined perceptual category learning using a prototype learning task known to recruit a corticostriatal system including the posterior striatum, motor cortex, visual cortex, and the intraparietal sulcus (IPS). Male and female human participants practiced categorizing stimuli as category members or nonmembers (A versus not-A) across three days, with fMRI data collected at the beginning and end. Univariate analyses found that corticostriatal activity in regions associated with habitual instrumental learning were recruited across both sessions, but activity in regions associated with goal-directed instrumental learning decreased from day 1 to day 3. Multivoxel Pattern Analysis (MVPA) indicated that after training the trained category could be more easily decoded from the IPS when compared with a novel category. Representational Similarity Analysis (RSA) showed development of category representations in IPS and motor cortex. In addition, RSA revealed evidence for category-related representations including prototype representation in the ventromedial prefrontal cortex which may reflect parallel development of schematic memory for the category structure. Overall, the results converge to show how performance of category decisions and representations of the category structure emerge after extensive training across the corticostriatal system underlying perceptual category learning.Significance Statement We compared activity during initial category learning with that after an extended training session and used multivariate methods to characterize representational changes. We found that representations changed in the intraparietal sulcus (IPS) and ventromedial prefrontal cortex (VMPFC). The IPS became sensitive to category membership and distinguished between the trained category and a novel category. The VMPFC showed sensitivity to the prototype as well as other category-related features. In addition, motor cortex coded for category membership decisions and making associated motor responses. Overall our results go beyond previous research that established what brain regions are recruited during the initial phases of perceptual category learning to characterize how category representations emerge as participants become highly skilled.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信