{"title":"联机目标函数参数估计的多人防御任务博弈论规划。","authors":"Hongwei Fang , Peng Yi","doi":"10.1016/j.isatra.2024.11.053","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigates a game-theoretic path planning algorithm with online objective function parameter estimation for a multiplayer intrusion-defense game, where the defenders aim to prevent intruders from entering the protected area. At first, an intruder is assigned to each defender to perform a one-to-one interception by solving an integer optimization problem. Then, the intrusion-defense game is formulated in a receding horizon manner by designing the objective function and constraints for the defenders and intruders, respectively. Their objective functions are coupled because they both consider the predicted interactions between the intruders and defenders. Therefore, a distributed proximal iterative best response scheme is designed for the group of defenders to cooperatively compute the Nash equilibrium. Each defender iteratively solves its own and its interception target’s optimization problems, and shares information within the defender group. Since the defenders cannot know the parameters of the intruders’ objective functions, an unscented Kalman filter-based estimator is constructed to online estimate the opponent’s unknown parameters. Extensive simulation experiments verify the effectiveness of the proposed method.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"157 ","pages":"Pages 318-328"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Game-theoretic planning for multiplayer defense task with online objective function parameter estimation\",\"authors\":\"Hongwei Fang , Peng Yi\",\"doi\":\"10.1016/j.isatra.2024.11.053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work investigates a game-theoretic path planning algorithm with online objective function parameter estimation for a multiplayer intrusion-defense game, where the defenders aim to prevent intruders from entering the protected area. At first, an intruder is assigned to each defender to perform a one-to-one interception by solving an integer optimization problem. Then, the intrusion-defense game is formulated in a receding horizon manner by designing the objective function and constraints for the defenders and intruders, respectively. Their objective functions are coupled because they both consider the predicted interactions between the intruders and defenders. Therefore, a distributed proximal iterative best response scheme is designed for the group of defenders to cooperatively compute the Nash equilibrium. Each defender iteratively solves its own and its interception target’s optimization problems, and shares information within the defender group. Since the defenders cannot know the parameters of the intruders’ objective functions, an unscented Kalman filter-based estimator is constructed to online estimate the opponent’s unknown parameters. Extensive simulation experiments verify the effectiveness of the proposed method.</div></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"157 \",\"pages\":\"Pages 318-328\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824005640\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824005640","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Game-theoretic planning for multiplayer defense task with online objective function parameter estimation
This work investigates a game-theoretic path planning algorithm with online objective function parameter estimation for a multiplayer intrusion-defense game, where the defenders aim to prevent intruders from entering the protected area. At first, an intruder is assigned to each defender to perform a one-to-one interception by solving an integer optimization problem. Then, the intrusion-defense game is formulated in a receding horizon manner by designing the objective function and constraints for the defenders and intruders, respectively. Their objective functions are coupled because they both consider the predicted interactions between the intruders and defenders. Therefore, a distributed proximal iterative best response scheme is designed for the group of defenders to cooperatively compute the Nash equilibrium. Each defender iteratively solves its own and its interception target’s optimization problems, and shares information within the defender group. Since the defenders cannot know the parameters of the intruders’ objective functions, an unscented Kalman filter-based estimator is constructed to online estimate the opponent’s unknown parameters. Extensive simulation experiments verify the effectiveness of the proposed method.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.