预测口咽鳞状细胞癌HPV阳性的机器学习方法。

IF 4.4 Q1 PATHOLOGY
Silvia Varricchio, Gennaro Ilardi, Angela Crispino, Marco Pietro D'Angelo, Daniela Russo, Rosa Maria Di Crescenzo, Stefania Staibano, Francesco Merolla
{"title":"预测口咽鳞状细胞癌HPV阳性的机器学习方法。","authors":"Silvia Varricchio, Gennaro Ilardi, Angela Crispino, Marco Pietro D'Angelo, Daniela Russo, Rosa Maria Di Crescenzo, Stefania Staibano, Francesco Merolla","doi":"10.32074/1591-951X-1027","DOIUrl":null,"url":null,"abstract":"<p><p>HPV status is an important prognostic factor in oropharyngeal squamous cell carcinoma (OPSCC), with HPV-positive tumors associated with better overall survival. To determine HPV status, we rely on the immunohistochemical investigation for expression of the P16<sup>INK4a</sup> protein, which must be associated with molecular investigation for the presence of viral DNA. We aim to define a criterion based on image analysis and machine learning to predict HPV status from hematoxylin/eosin stain.</p><p><p>We extracted a pool of 41 morphometric and colorimetric features from each tumor cell identified from two different cohorts of tumor tissues obtained from the Cancer Genome Atlas and the archives of the Pathological Anatomy of Federico II of Naples. On this data, we built a random Forest classifier. Our model showed a 90% accuracy. We also studied the variable importance to define a criterion useful for the explainability of the model. Prediction of the molecular state of a neoplastic cell based on digitally extracted morphometric features is fascinating and promises to revolutionize histopathology. We have built a classifier capable of anticipating the result of p16-immunohistochemistry and molecular test to assess the HPV status of squamous carcinomas of the oropharynx by analyzing the hematoxylin/eosin staining.</p>","PeriodicalId":45893,"journal":{"name":"PATHOLOGICA","volume":"116 6","pages":"379-389"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A machine learning approach to predict HPV positivity of oropharyngeal squamous cell carcinoma.\",\"authors\":\"Silvia Varricchio, Gennaro Ilardi, Angela Crispino, Marco Pietro D'Angelo, Daniela Russo, Rosa Maria Di Crescenzo, Stefania Staibano, Francesco Merolla\",\"doi\":\"10.32074/1591-951X-1027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>HPV status is an important prognostic factor in oropharyngeal squamous cell carcinoma (OPSCC), with HPV-positive tumors associated with better overall survival. To determine HPV status, we rely on the immunohistochemical investigation for expression of the P16<sup>INK4a</sup> protein, which must be associated with molecular investigation for the presence of viral DNA. We aim to define a criterion based on image analysis and machine learning to predict HPV status from hematoxylin/eosin stain.</p><p><p>We extracted a pool of 41 morphometric and colorimetric features from each tumor cell identified from two different cohorts of tumor tissues obtained from the Cancer Genome Atlas and the archives of the Pathological Anatomy of Federico II of Naples. On this data, we built a random Forest classifier. Our model showed a 90% accuracy. We also studied the variable importance to define a criterion useful for the explainability of the model. Prediction of the molecular state of a neoplastic cell based on digitally extracted morphometric features is fascinating and promises to revolutionize histopathology. We have built a classifier capable of anticipating the result of p16-immunohistochemistry and molecular test to assess the HPV status of squamous carcinomas of the oropharynx by analyzing the hematoxylin/eosin staining.</p>\",\"PeriodicalId\":45893,\"journal\":{\"name\":\"PATHOLOGICA\",\"volume\":\"116 6\",\"pages\":\"379-389\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PATHOLOGICA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32074/1591-951X-1027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PATHOLOGICA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32074/1591-951X-1027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

HPV状态是口咽鳞状细胞癌(OPSCC)的重要预后因素,HPV阳性肿瘤与更好的总生存率相关。为了确定HPV状态,我们依赖于P16INK4a蛋白表达的免疫组织化学研究,这必须与病毒DNA存在的分子研究相关联。我们的目标是定义一个基于图像分析和机器学习的标准来预测苏木精/伊红染色的HPV状态。我们从癌症基因组图谱和那不勒斯费德里科二世病理解剖档案中获得的两个不同队列的肿瘤组织中鉴定的每个肿瘤细胞中提取了41个形态和比色特征。基于这些数据,我们构建了一个随机森林分类器。我们的模型显示出90%的准确率。我们还研究了变量的重要性,以定义一个对模型的可解释性有用的标准。基于数字提取的形态特征来预测肿瘤细胞的分子状态是很有吸引力的,并且有望彻底改变组织病理学。我们建立了一个能够预测p16免疫组织化学和分子检测结果的分类器,通过分析苏木精/伊红染色来评估口咽部鳞状癌的HPV状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A machine learning approach to predict HPV positivity of oropharyngeal squamous cell carcinoma.

HPV status is an important prognostic factor in oropharyngeal squamous cell carcinoma (OPSCC), with HPV-positive tumors associated with better overall survival. To determine HPV status, we rely on the immunohistochemical investigation for expression of the P16INK4a protein, which must be associated with molecular investigation for the presence of viral DNA. We aim to define a criterion based on image analysis and machine learning to predict HPV status from hematoxylin/eosin stain.

We extracted a pool of 41 morphometric and colorimetric features from each tumor cell identified from two different cohorts of tumor tissues obtained from the Cancer Genome Atlas and the archives of the Pathological Anatomy of Federico II of Naples. On this data, we built a random Forest classifier. Our model showed a 90% accuracy. We also studied the variable importance to define a criterion useful for the explainability of the model. Prediction of the molecular state of a neoplastic cell based on digitally extracted morphometric features is fascinating and promises to revolutionize histopathology. We have built a classifier capable of anticipating the result of p16-immunohistochemistry and molecular test to assess the HPV status of squamous carcinomas of the oropharynx by analyzing the hematoxylin/eosin staining.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PATHOLOGICA
PATHOLOGICA PATHOLOGY-
CiteScore
5.90
自引率
5.70%
发文量
108
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信