基于QuPath和基于stardist模型的口腔鳞状细胞癌肿瘤浸润淋巴细胞自动评估的数字化工作流程

IF 4.4 Q1 PATHOLOGY
Angela Crispino, Silvia Varricchio, Gennaro Ilardi, Daniela Russo, Rosa Maria Di Crescenzo, Stefania Staibano, Francesco Merolla
{"title":"基于QuPath和基于stardist模型的口腔鳞状细胞癌肿瘤浸润淋巴细胞自动评估的数字化工作流程","authors":"Angela Crispino, Silvia Varricchio, Gennaro Ilardi, Daniela Russo, Rosa Maria Di Crescenzo, Stefania Staibano, Francesco Merolla","doi":"10.32074/1591-951X-1069","DOIUrl":null,"url":null,"abstract":"<p><p>The search for reliable prognostic markers in oral squamous cell carcinoma (OSCC) remains a critical need. Tumor-infiltrating lymphocytes (TILs), particularly T lymphocytes, play a pivotal role in the immune response against tumors and are strongly correlated with favorable prognoses. Computational pathology has proven highly effective for histopathological image analysis, automating tasks such as cell detection, classification, and segmentation.</p><p><p>In the present study, we developed a StarDist-based model to automatically detect T lymphocytes in hematoxylin and eosin (H&E)-stained whole-slide images (WSIs) of OSCC, bypassing the need for traditional immunohistochemistry (IHC). Using QuPath, we generated training datasets from annotated slides, employing IHC as the ground truth. Our model was validated on Cancer Genome Atlas-derived OSCC images, and survival analyses demonstrated that higher TIL densities correlated with improved patient outcomes.</p><p><p>This work introduces an efficient, AI-powered workflow for automated immune profiling in OSCC, offering a reproducible and scalable approach for diagnostic and prognostic applications.</p>","PeriodicalId":45893,"journal":{"name":"PATHOLOGICA","volume":"116 6","pages":"390-403"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Digital Workflow for Automated Assessment of Tumor-Infiltrating Lymphocytes in Oral Squamous Cell Carcinoma Using QuPath and a StarDist-Based Model.\",\"authors\":\"Angela Crispino, Silvia Varricchio, Gennaro Ilardi, Daniela Russo, Rosa Maria Di Crescenzo, Stefania Staibano, Francesco Merolla\",\"doi\":\"10.32074/1591-951X-1069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The search for reliable prognostic markers in oral squamous cell carcinoma (OSCC) remains a critical need. Tumor-infiltrating lymphocytes (TILs), particularly T lymphocytes, play a pivotal role in the immune response against tumors and are strongly correlated with favorable prognoses. Computational pathology has proven highly effective for histopathological image analysis, automating tasks such as cell detection, classification, and segmentation.</p><p><p>In the present study, we developed a StarDist-based model to automatically detect T lymphocytes in hematoxylin and eosin (H&E)-stained whole-slide images (WSIs) of OSCC, bypassing the need for traditional immunohistochemistry (IHC). Using QuPath, we generated training datasets from annotated slides, employing IHC as the ground truth. Our model was validated on Cancer Genome Atlas-derived OSCC images, and survival analyses demonstrated that higher TIL densities correlated with improved patient outcomes.</p><p><p>This work introduces an efficient, AI-powered workflow for automated immune profiling in OSCC, offering a reproducible and scalable approach for diagnostic and prognostic applications.</p>\",\"PeriodicalId\":45893,\"journal\":{\"name\":\"PATHOLOGICA\",\"volume\":\"116 6\",\"pages\":\"390-403\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PATHOLOGICA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32074/1591-951X-1069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PATHOLOGICA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32074/1591-951X-1069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

寻找可靠的口腔鳞状细胞癌(OSCC)预后标志物仍然是一个迫切需要。肿瘤浸润淋巴细胞(til),特别是T淋巴细胞,在对抗肿瘤的免疫反应中起着关键作用,并与良好的预后密切相关。计算病理学已被证明在组织病理学图像分析、细胞检测、分类和分割等自动化任务方面非常有效。在本研究中,我们开发了一种基于stardists的模型,可以自动检测细胞癌苏木精和伊红(H&E)染色的全切片图像(WSIs)中的T淋巴细胞,而无需传统的免疫组织化学(IHC)。使用QuPath,我们从带注释的幻灯片中生成训练数据集,采用IHC作为基础真理。我们的模型在Cancer Genome atlas衍生的OSCC图像上得到了验证,生存分析表明,较高的TIL密度与改善的患者预后相关。这项工作为OSCC中的自动免疫分析引入了一种高效的、人工智能驱动的工作流程,为诊断和预后应用提供了一种可重复和可扩展的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Digital Workflow for Automated Assessment of Tumor-Infiltrating Lymphocytes in Oral Squamous Cell Carcinoma Using QuPath and a StarDist-Based Model.

The search for reliable prognostic markers in oral squamous cell carcinoma (OSCC) remains a critical need. Tumor-infiltrating lymphocytes (TILs), particularly T lymphocytes, play a pivotal role in the immune response against tumors and are strongly correlated with favorable prognoses. Computational pathology has proven highly effective for histopathological image analysis, automating tasks such as cell detection, classification, and segmentation.

In the present study, we developed a StarDist-based model to automatically detect T lymphocytes in hematoxylin and eosin (H&E)-stained whole-slide images (WSIs) of OSCC, bypassing the need for traditional immunohistochemistry (IHC). Using QuPath, we generated training datasets from annotated slides, employing IHC as the ground truth. Our model was validated on Cancer Genome Atlas-derived OSCC images, and survival analyses demonstrated that higher TIL densities correlated with improved patient outcomes.

This work introduces an efficient, AI-powered workflow for automated immune profiling in OSCC, offering a reproducible and scalable approach for diagnostic and prognostic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PATHOLOGICA
PATHOLOGICA PATHOLOGY-
CiteScore
5.90
自引率
5.70%
发文量
108
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信