Rosa Vila-Andrés, Anabel Martínez-Espert, Walter D Furlan, José J Esteve-Taboada, Vicente Micó
{"title":"衍射人工晶状体轮廓的非接触全息重建。","authors":"Rosa Vila-Andrés, Anabel Martínez-Espert, Walter D Furlan, José J Esteve-Taboada, Vicente Micó","doi":"10.1038/s41598-024-84363-7","DOIUrl":null,"url":null,"abstract":"<p><p>A lensless compact arrangement based on digital in-line holography under Gabor's regime is proposed as a novel contactless method to assess the profile of multifocal intraocular lenses (MIOLs) which are conformed by several diffractive rings. Diffractive MIOLs are a widely adopted ophthalmologic option for the correction of presbyopia in patients undergoing cataract surgery. The MIOL optical design might introduce non-negligible optical performance differences between lenses as well as the introduction of undesirable photic phenomena (such as halos and glare) affecting the vision of users. Therefore, the customized topographic control of each manufactured MIOL model, along with the advancement of optical simulation routines, is increasingly necessary to provide users with optimized performance of these implanted optics, as well as predictable and realistic expectations of their future vision with these solutions. In this manuscript, experimental results of the reconstruction of different smooth and highly edged diffractive profiles from a pair of commercially available MIOLs are presented. Besides, a study evaluating the convergence and robustness of the proposed iterative phase-retrieval routine based on a modified classical Gerchberg-Saxton algorithm is performed. These results provide experimental validation of the proposed technique for accurately measuring the optical profiles of MIOLs.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"566"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696758/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-contact lensless holographic reconstruction of diffractive intraocular lenses profiles.\",\"authors\":\"Rosa Vila-Andrés, Anabel Martínez-Espert, Walter D Furlan, José J Esteve-Taboada, Vicente Micó\",\"doi\":\"10.1038/s41598-024-84363-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A lensless compact arrangement based on digital in-line holography under Gabor's regime is proposed as a novel contactless method to assess the profile of multifocal intraocular lenses (MIOLs) which are conformed by several diffractive rings. Diffractive MIOLs are a widely adopted ophthalmologic option for the correction of presbyopia in patients undergoing cataract surgery. The MIOL optical design might introduce non-negligible optical performance differences between lenses as well as the introduction of undesirable photic phenomena (such as halos and glare) affecting the vision of users. Therefore, the customized topographic control of each manufactured MIOL model, along with the advancement of optical simulation routines, is increasingly necessary to provide users with optimized performance of these implanted optics, as well as predictable and realistic expectations of their future vision with these solutions. In this manuscript, experimental results of the reconstruction of different smooth and highly edged diffractive profiles from a pair of commercially available MIOLs are presented. Besides, a study evaluating the convergence and robustness of the proposed iterative phase-retrieval routine based on a modified classical Gerchberg-Saxton algorithm is performed. These results provide experimental validation of the proposed technique for accurately measuring the optical profiles of MIOLs.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"566\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696758/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-84363-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-84363-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Non-contact lensless holographic reconstruction of diffractive intraocular lenses profiles.
A lensless compact arrangement based on digital in-line holography under Gabor's regime is proposed as a novel contactless method to assess the profile of multifocal intraocular lenses (MIOLs) which are conformed by several diffractive rings. Diffractive MIOLs are a widely adopted ophthalmologic option for the correction of presbyopia in patients undergoing cataract surgery. The MIOL optical design might introduce non-negligible optical performance differences between lenses as well as the introduction of undesirable photic phenomena (such as halos and glare) affecting the vision of users. Therefore, the customized topographic control of each manufactured MIOL model, along with the advancement of optical simulation routines, is increasingly necessary to provide users with optimized performance of these implanted optics, as well as predictable and realistic expectations of their future vision with these solutions. In this manuscript, experimental results of the reconstruction of different smooth and highly edged diffractive profiles from a pair of commercially available MIOLs are presented. Besides, a study evaluating the convergence and robustness of the proposed iterative phase-retrieval routine based on a modified classical Gerchberg-Saxton algorithm is performed. These results provide experimental validation of the proposed technique for accurately measuring the optical profiles of MIOLs.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.