采用双功能Ce/Mn/γ-Al₂O₃催化剂从废食用油高效制备生物柴油。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nashwa Mohammed Alahmar, Nur Izyan Binti Wan Azelee, Susilawati Toemen
{"title":"采用双功能Ce/Mn/γ-Al₂O₃催化剂从废食用油高效制备生物柴油。","authors":"Nashwa Mohammed Alahmar, Nur Izyan Binti Wan Azelee, Susilawati Toemen","doi":"10.1038/s41598-024-82845-2","DOIUrl":null,"url":null,"abstract":"<p><p>As the demand for sustainable energy sources intensifies, biodiesel emerges as a compelling renewable alternative to petroleum-based fuels. Leveraging waste cooking oil (WCO) as a feedstock not only offers an environmentally friendly fuel source but also addresses waste disposal issues. However, biodiesel production from WCO faces challenges, particularly due to its high free fatty acid (FFA) content, which can hinder efficient conversion and lead to soap formation in traditional alkaline-catalysed processes. This study seeks to overcome these challenges by developing and optimizing a bifunctional Ce/Mn(10:90)/γ-Al₂O₃ catalyst via the incipient wetness impregnation (IWI) method. The catalyst's dual acidic and basic active sites enable simultaneous esterification and transesterification, enhancing biodiesel production efficiency from high-FFA feedstocks. Various parameters were optimized, including calcination temperatures, catalyst loadings, and reaction conditions such as methanol-to-oil ratio, catalyst loading, reaction temperature, and time for the transesterification process. The Ce/Mn(10:90)/γ-Al₂O₃ catalyst, calcined at 800 °C, achieved a maximum triglyceride (TG) conversion of 97% under optimal conditions. These conditions were determined to be 10 wt% catalyst loading, a 1:24 methanol-to-oil ratio, a reaction temperature of 65 °C, and a reaction time of 3 h. The catalyst's high efficiency is attributed to its high basicity (1.543 mmol/g), large surface area (143 m<sup>2</sup>/g), and small particle size (22 nm), which collectively enhance its catalytic performance. This bifunctional catalyst design thus offers a robust solution for the efficient conversion of high-FFA WCO into biodiesel, maximizing performance and sustainability.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"352"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695985/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient biodiesel production from waste cooking oil using a bifunctional Ce/Mn/γ-Al₂O₃ catalysts.\",\"authors\":\"Nashwa Mohammed Alahmar, Nur Izyan Binti Wan Azelee, Susilawati Toemen\",\"doi\":\"10.1038/s41598-024-82845-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the demand for sustainable energy sources intensifies, biodiesel emerges as a compelling renewable alternative to petroleum-based fuels. Leveraging waste cooking oil (WCO) as a feedstock not only offers an environmentally friendly fuel source but also addresses waste disposal issues. However, biodiesel production from WCO faces challenges, particularly due to its high free fatty acid (FFA) content, which can hinder efficient conversion and lead to soap formation in traditional alkaline-catalysed processes. This study seeks to overcome these challenges by developing and optimizing a bifunctional Ce/Mn(10:90)/γ-Al₂O₃ catalyst via the incipient wetness impregnation (IWI) method. The catalyst's dual acidic and basic active sites enable simultaneous esterification and transesterification, enhancing biodiesel production efficiency from high-FFA feedstocks. Various parameters were optimized, including calcination temperatures, catalyst loadings, and reaction conditions such as methanol-to-oil ratio, catalyst loading, reaction temperature, and time for the transesterification process. The Ce/Mn(10:90)/γ-Al₂O₃ catalyst, calcined at 800 °C, achieved a maximum triglyceride (TG) conversion of 97% under optimal conditions. These conditions were determined to be 10 wt% catalyst loading, a 1:24 methanol-to-oil ratio, a reaction temperature of 65 °C, and a reaction time of 3 h. The catalyst's high efficiency is attributed to its high basicity (1.543 mmol/g), large surface area (143 m<sup>2</sup>/g), and small particle size (22 nm), which collectively enhance its catalytic performance. This bifunctional catalyst design thus offers a robust solution for the efficient conversion of high-FFA WCO into biodiesel, maximizing performance and sustainability.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"352\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695985/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-82845-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82845-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

随着对可持续能源需求的增加,生物柴油成为石油基燃料的一种引人注目的可再生替代品。利用废食用油(WCO)作为原料不仅提供了一种环保的燃料来源,而且还解决了废物处理问题。然而,从WCO生产生物柴油面临挑战,特别是由于其高游离脂肪酸(FFA)含量,这可能会阻碍有效的转化,并导致传统碱催化过程中的肥皂形成。本研究试图通过初始湿浸渍(IWI)方法开发和优化双功能Ce/Mn(10:90)/γ-Al₂O₃催化剂来克服这些挑战。该催化剂的双酸性和碱性活性位点可以同时进行酯化和酯交换,提高了高ffa原料生产生物柴油的效率。优化了焙烧温度、催化剂负载、醇油比、催化剂负载、反应温度和酯交换时间等反应条件。Ce/Mn(10:90)/γ-Al₂O₃催化剂在800℃下煅烧,在最佳条件下,甘油三酯(TG)转化率最高可达97%。实验条件为:催化剂负载10 wt%,甲醇油比1:24,反应温度65℃,反应时间3 h。催化剂的高碱性(1.543 mmol/g),大表面积(143 m2/g),小粒径(22 nm),这些因素共同提高了催化剂的催化性能。因此,这种双功能催化剂设计为高ffa WCO高效转化为生物柴油提供了一个强大的解决方案,最大限度地提高了性能和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient biodiesel production from waste cooking oil using a bifunctional Ce/Mn/γ-Al₂O₃ catalysts.

As the demand for sustainable energy sources intensifies, biodiesel emerges as a compelling renewable alternative to petroleum-based fuels. Leveraging waste cooking oil (WCO) as a feedstock not only offers an environmentally friendly fuel source but also addresses waste disposal issues. However, biodiesel production from WCO faces challenges, particularly due to its high free fatty acid (FFA) content, which can hinder efficient conversion and lead to soap formation in traditional alkaline-catalysed processes. This study seeks to overcome these challenges by developing and optimizing a bifunctional Ce/Mn(10:90)/γ-Al₂O₃ catalyst via the incipient wetness impregnation (IWI) method. The catalyst's dual acidic and basic active sites enable simultaneous esterification and transesterification, enhancing biodiesel production efficiency from high-FFA feedstocks. Various parameters were optimized, including calcination temperatures, catalyst loadings, and reaction conditions such as methanol-to-oil ratio, catalyst loading, reaction temperature, and time for the transesterification process. The Ce/Mn(10:90)/γ-Al₂O₃ catalyst, calcined at 800 °C, achieved a maximum triglyceride (TG) conversion of 97% under optimal conditions. These conditions were determined to be 10 wt% catalyst loading, a 1:24 methanol-to-oil ratio, a reaction temperature of 65 °C, and a reaction time of 3 h. The catalyst's high efficiency is attributed to its high basicity (1.543 mmol/g), large surface area (143 m2/g), and small particle size (22 nm), which collectively enhance its catalytic performance. This bifunctional catalyst design thus offers a robust solution for the efficient conversion of high-FFA WCO into biodiesel, maximizing performance and sustainability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信