Samuel K Treves, Victor Ukleev, Andreas Apseros, Jamie Robert Massey, Kai Wagner, Paul Lehmann, Aki Kitaori, Naoya Kanazawa, Jeffrey A Brock, Simone Finizio, Joakim Reuteler, Yoshinori Tokura, Patrick Maletinsky, Valerio Scagnoli
{"title":"研究NdMn2Ge2中离子稳定性和磁芯极性反转。","authors":"Samuel K Treves, Victor Ukleev, Andreas Apseros, Jamie Robert Massey, Kai Wagner, Paul Lehmann, Aki Kitaori, Naoya Kanazawa, Jeffrey A Brock, Simone Finizio, Joakim Reuteler, Yoshinori Tokura, Patrick Maletinsky, Valerio Scagnoli","doi":"10.1038/s41598-024-82114-2","DOIUrl":null,"url":null,"abstract":"<p><p>We present a study on nanoscale skyrmionic spin textures in [Formula: see text], a rare-earth complex noncollinear ferromagnet. We confirm, using X-ray microscopy, that [Formula: see text] can host lattices of metastable skyrmion bubbles at room temperature in the absence of a magnetic field, after applying a suitable field cooling protocol. The skyrmion bubbles are robust against temperature changes from room temperature to 330 K. Furthermore, the skyrmion bubbles can be distorted, deformed, and recovered by varying strength and orientation of the applied magnetic field. We have used nitrogen-vacancy nanoscale magnetic imaging to estimate and map the magnetic stray fields originating from our [Formula: see text] lamella samples and find stray field magnitudes on the order of a few mT near the sample surface. Micromagnetic simulations show an overall agreement with the observed behaviour of the sample under different magnetic field protocols. We also find that the presence of the Dzyaloshinskii-Moriya interaction is not required to reproduce our experimental results. Its inclusion in the simulation leads to a reversal of the skyrmionic object core polarity, which is not experimentally observed. Our results further corroborate the stability and robustness of the skyrmion bubbles formed in [Formula: see text] and their potential for future spintronic applications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"461"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697451/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating skyrmion stability and core polarity reversal in NdMn<sub>2</sub>Ge<sub>2</sub>.\",\"authors\":\"Samuel K Treves, Victor Ukleev, Andreas Apseros, Jamie Robert Massey, Kai Wagner, Paul Lehmann, Aki Kitaori, Naoya Kanazawa, Jeffrey A Brock, Simone Finizio, Joakim Reuteler, Yoshinori Tokura, Patrick Maletinsky, Valerio Scagnoli\",\"doi\":\"10.1038/s41598-024-82114-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a study on nanoscale skyrmionic spin textures in [Formula: see text], a rare-earth complex noncollinear ferromagnet. We confirm, using X-ray microscopy, that [Formula: see text] can host lattices of metastable skyrmion bubbles at room temperature in the absence of a magnetic field, after applying a suitable field cooling protocol. The skyrmion bubbles are robust against temperature changes from room temperature to 330 K. Furthermore, the skyrmion bubbles can be distorted, deformed, and recovered by varying strength and orientation of the applied magnetic field. We have used nitrogen-vacancy nanoscale magnetic imaging to estimate and map the magnetic stray fields originating from our [Formula: see text] lamella samples and find stray field magnitudes on the order of a few mT near the sample surface. Micromagnetic simulations show an overall agreement with the observed behaviour of the sample under different magnetic field protocols. We also find that the presence of the Dzyaloshinskii-Moriya interaction is not required to reproduce our experimental results. Its inclusion in the simulation leads to a reversal of the skyrmionic object core polarity, which is not experimentally observed. Our results further corroborate the stability and robustness of the skyrmion bubbles formed in [Formula: see text] and their potential for future spintronic applications.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"461\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697451/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-82114-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82114-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Investigating skyrmion stability and core polarity reversal in NdMn2Ge2.
We present a study on nanoscale skyrmionic spin textures in [Formula: see text], a rare-earth complex noncollinear ferromagnet. We confirm, using X-ray microscopy, that [Formula: see text] can host lattices of metastable skyrmion bubbles at room temperature in the absence of a magnetic field, after applying a suitable field cooling protocol. The skyrmion bubbles are robust against temperature changes from room temperature to 330 K. Furthermore, the skyrmion bubbles can be distorted, deformed, and recovered by varying strength and orientation of the applied magnetic field. We have used nitrogen-vacancy nanoscale magnetic imaging to estimate and map the magnetic stray fields originating from our [Formula: see text] lamella samples and find stray field magnitudes on the order of a few mT near the sample surface. Micromagnetic simulations show an overall agreement with the observed behaviour of the sample under different magnetic field protocols. We also find that the presence of the Dzyaloshinskii-Moriya interaction is not required to reproduce our experimental results. Its inclusion in the simulation leads to a reversal of the skyrmionic object core polarity, which is not experimentally observed. Our results further corroborate the stability and robustness of the skyrmion bubbles formed in [Formula: see text] and their potential for future spintronic applications.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.