KIF18A是JNK1/c-Jun信号通路参与宫颈肿瘤发生的新靶点

IF 4.5 2区 生物学 Q2 CELL BIOLOGY
Yajie Wang, Bowen Zhou, Xiaoying Lian, Siqi Yu, Baihai Huang, Xinyue Wu, Lianpu Wen, Changjun Zhu
{"title":"KIF18A是JNK1/c-Jun信号通路参与宫颈肿瘤发生的新靶点","authors":"Yajie Wang,&nbsp;Bowen Zhou,&nbsp;Xiaoying Lian,&nbsp;Siqi Yu,&nbsp;Baihai Huang,&nbsp;Xinyue Wu,&nbsp;Lianpu Wen,&nbsp;Changjun Zhu","doi":"10.1002/jcp.31516","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cervical cancer remains a significant global health concern. KIF18A, a kinesin motor protein regulating microtubule dynamics during mitosis, is frequently overexpressed in various cancers, but its regulatory mechanisms are poorly understood. This study investigates KIF18A's role in cervical cancer and its regulation by the JNK1/c-Jun signaling pathway. Cell growth was assessed in vitro using MTT and colony formation assays, and in vivo using a nude mouse xenograft model with KIF18A knockdown HeLa cells. The Genomic Data Commons (GDC) data portal was used to identify KIF18A-related protein kinases in cervical cancer. Western blot analysis was employed to analyze phosphor-c-Jun, c-Jun, and KIF18A expression levels following JNK1 inhibition, c-Jun knockdown/overexpression, and KIF18A knockdown in cervical cancer cells. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were performed to assess c-Jun binding and transcriptional activity of the KIF18A promoter. KIF18A knockdown significantly impaired cervical cancer cell growth both in vitro and in vivo. A strong positive correlation was observed between JNK1 and KIF18A expression in cervical and other cancers. JNK1 inhibition decreased both KIF18A expression and c-Jun phosphorylation. c-Jun was found to directly bind to and activate the KIF18A promoter. Furthermore, c-Jun knockdown inhibited cervical cancer cell growth, and this effect was partially rescued by KIF18A overexpression. This study demonstrates that the JNK1/c-Jun pathway activates KIF18A expression, which is essential for cervical cancer cell growth. Targeting the JNK/c-Jun/KIF18A axis may represent a promising novel therapeutic strategy for cancer treatment.</p>\n </div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KIF18A Is a Novel Target of JNK1/c-Jun Signaling Pathway Involved in Cervical Tumorigenesis\",\"authors\":\"Yajie Wang,&nbsp;Bowen Zhou,&nbsp;Xiaoying Lian,&nbsp;Siqi Yu,&nbsp;Baihai Huang,&nbsp;Xinyue Wu,&nbsp;Lianpu Wen,&nbsp;Changjun Zhu\",\"doi\":\"10.1002/jcp.31516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cervical cancer remains a significant global health concern. KIF18A, a kinesin motor protein regulating microtubule dynamics during mitosis, is frequently overexpressed in various cancers, but its regulatory mechanisms are poorly understood. This study investigates KIF18A's role in cervical cancer and its regulation by the JNK1/c-Jun signaling pathway. Cell growth was assessed in vitro using MTT and colony formation assays, and in vivo using a nude mouse xenograft model with KIF18A knockdown HeLa cells. The Genomic Data Commons (GDC) data portal was used to identify KIF18A-related protein kinases in cervical cancer. Western blot analysis was employed to analyze phosphor-c-Jun, c-Jun, and KIF18A expression levels following JNK1 inhibition, c-Jun knockdown/overexpression, and KIF18A knockdown in cervical cancer cells. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were performed to assess c-Jun binding and transcriptional activity of the KIF18A promoter. KIF18A knockdown significantly impaired cervical cancer cell growth both in vitro and in vivo. A strong positive correlation was observed between JNK1 and KIF18A expression in cervical and other cancers. JNK1 inhibition decreased both KIF18A expression and c-Jun phosphorylation. c-Jun was found to directly bind to and activate the KIF18A promoter. Furthermore, c-Jun knockdown inhibited cervical cancer cell growth, and this effect was partially rescued by KIF18A overexpression. This study demonstrates that the JNK1/c-Jun pathway activates KIF18A expression, which is essential for cervical cancer cell growth. Targeting the JNK/c-Jun/KIF18A axis may represent a promising novel therapeutic strategy for cancer treatment.</p>\\n </div>\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":\"240 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31516\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31516","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

子宫颈癌仍然是一个重大的全球健康问题。KIF18A是一种调节有丝分裂过程中微管动力学的运动蛋白,在各种癌症中经常过表达,但其调节机制尚不清楚。本研究探讨了KIF18A在宫颈癌中的作用及其通过JNK1/c-Jun信号通路的调控。体外用MTT法和集落形成法评估细胞生长情况,体内用KIF18A敲除HeLa细胞的裸鼠异种移植模型评估细胞生长情况。使用基因组数据共享(GDC)数据门户网站鉴定宫颈癌中kif18a相关蛋白激酶。Western blot分析JNK1抑制、c-Jun敲低/过表达、KIF18A敲低后宫颈癌细胞中磷酸化c-Jun、c-Jun和KIF18A的表达水平。采用染色质免疫沉淀(ChIP)和荧光素酶报告基因检测来评估KIF18A启动子的c-Jun结合和转录活性。在体外和体内,KIF18A敲低显著抑制宫颈癌细胞的生长。JNK1和KIF18A在宫颈癌和其他癌症中的表达呈显著正相关。JNK1抑制降低了KIF18A表达和c-Jun磷酸化。c-Jun被发现直接结合并激活KIF18A启动子。此外,c-Jun敲低可以抑制宫颈癌细胞的生长,这种作用部分被KIF18A过表达所挽救。本研究表明JNK1/c-Jun通路激活KIF18A表达,而KIF18A是宫颈癌细胞生长所必需的。靶向JNK/c-Jun/KIF18A轴可能是一种有前景的癌症治疗新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KIF18A Is a Novel Target of JNK1/c-Jun Signaling Pathway Involved in Cervical Tumorigenesis

Cervical cancer remains a significant global health concern. KIF18A, a kinesin motor protein regulating microtubule dynamics during mitosis, is frequently overexpressed in various cancers, but its regulatory mechanisms are poorly understood. This study investigates KIF18A's role in cervical cancer and its regulation by the JNK1/c-Jun signaling pathway. Cell growth was assessed in vitro using MTT and colony formation assays, and in vivo using a nude mouse xenograft model with KIF18A knockdown HeLa cells. The Genomic Data Commons (GDC) data portal was used to identify KIF18A-related protein kinases in cervical cancer. Western blot analysis was employed to analyze phosphor-c-Jun, c-Jun, and KIF18A expression levels following JNK1 inhibition, c-Jun knockdown/overexpression, and KIF18A knockdown in cervical cancer cells. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were performed to assess c-Jun binding and transcriptional activity of the KIF18A promoter. KIF18A knockdown significantly impaired cervical cancer cell growth both in vitro and in vivo. A strong positive correlation was observed between JNK1 and KIF18A expression in cervical and other cancers. JNK1 inhibition decreased both KIF18A expression and c-Jun phosphorylation. c-Jun was found to directly bind to and activate the KIF18A promoter. Furthermore, c-Jun knockdown inhibited cervical cancer cell growth, and this effect was partially rescued by KIF18A overexpression. This study demonstrates that the JNK1/c-Jun pathway activates KIF18A expression, which is essential for cervical cancer cell growth. Targeting the JNK/c-Jun/KIF18A axis may represent a promising novel therapeutic strategy for cancer treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
256
审稿时长
1 months
期刊介绍: The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信