{"title":"聚合性疾病的研究进展:机制、疾病意义和治疗策略。","authors":"Haixia Zhuang, Xinyu Ma","doi":"10.1002/jcp.31512","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The accumulation of misfolded proteins within cells leads to the formation of protein aggregates that disrupt normal cellular functions and contribute to a range of human pathologies, notably neurodegenerative disorders. Consequently, the investigation into the mechanisms of aggregate formation and their subsequent clearance is of considerable importance for the development of therapeutic strategies. The clearance of protein aggregates is predominantly achieved via the autophagy-lysosomal pathway, a process known as aggrephagy. In this pathway, autophagosome biogenesis and lysosomal digestion provide necessary conditions for the clearance of protein aggregates, while autophagy receptors such as P62, NBR1, TAX1BP1, TOLLIP, and CCT2 facilitate the recognition of protein aggregates by the autophagy machinery, playing a pivotal role in their degradation. This review will introduce the mechanisms of aggregate formation, progression, and degradation, with particular emphasis on advances in aggrephagy, providing insights for aggregates-related diseases and the development of novel therapeutic strategies.</p></div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Aggrephagy: Mechanisms, Disease Implications, and Therapeutic Strategies\",\"authors\":\"Haixia Zhuang, Xinyu Ma\",\"doi\":\"10.1002/jcp.31512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The accumulation of misfolded proteins within cells leads to the formation of protein aggregates that disrupt normal cellular functions and contribute to a range of human pathologies, notably neurodegenerative disorders. Consequently, the investigation into the mechanisms of aggregate formation and their subsequent clearance is of considerable importance for the development of therapeutic strategies. The clearance of protein aggregates is predominantly achieved via the autophagy-lysosomal pathway, a process known as aggrephagy. In this pathway, autophagosome biogenesis and lysosomal digestion provide necessary conditions for the clearance of protein aggregates, while autophagy receptors such as P62, NBR1, TAX1BP1, TOLLIP, and CCT2 facilitate the recognition of protein aggregates by the autophagy machinery, playing a pivotal role in their degradation. This review will introduce the mechanisms of aggregate formation, progression, and degradation, with particular emphasis on advances in aggrephagy, providing insights for aggregates-related diseases and the development of novel therapeutic strategies.</p></div>\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":\"240 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31512\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31512","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Advances in Aggrephagy: Mechanisms, Disease Implications, and Therapeutic Strategies
The accumulation of misfolded proteins within cells leads to the formation of protein aggregates that disrupt normal cellular functions and contribute to a range of human pathologies, notably neurodegenerative disorders. Consequently, the investigation into the mechanisms of aggregate formation and their subsequent clearance is of considerable importance for the development of therapeutic strategies. The clearance of protein aggregates is predominantly achieved via the autophagy-lysosomal pathway, a process known as aggrephagy. In this pathway, autophagosome biogenesis and lysosomal digestion provide necessary conditions for the clearance of protein aggregates, while autophagy receptors such as P62, NBR1, TAX1BP1, TOLLIP, and CCT2 facilitate the recognition of protein aggregates by the autophagy machinery, playing a pivotal role in their degradation. This review will introduce the mechanisms of aggregate formation, progression, and degradation, with particular emphasis on advances in aggrephagy, providing insights for aggregates-related diseases and the development of novel therapeutic strategies.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.