脂联素靶向AMPK/mTOR信号通路减轻癫痫患者的认知障碍。

IF 3.4 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular medicine reports Pub Date : 2025-03-01 Epub Date: 2025-01-03 DOI:10.3892/mmr.2025.13429
Yaoyuan Zhang, Zhenzhen Qu, Zhuofeng Mao, Hu Liu, Weiping Wang, Lijing Jia
{"title":"脂联素靶向AMPK/mTOR信号通路减轻癫痫患者的认知障碍。","authors":"Yaoyuan Zhang, Zhenzhen Qu, Zhuofeng Mao, Hu Liu, Weiping Wang, Lijing Jia","doi":"10.3892/mmr.2025.13429","DOIUrl":null,"url":null,"abstract":"<p><p>Among patients with chronic epilepsy, 70‑80% have cognitive impairment. To investigate the relationship between adiponectin (ADPN) and the cognitive level in epilepsy and its mechanism, 20 epileptic patients and 20 healthy controls were included for the assessment of the cognitive level. An ELISA was used to evaluate the serum ADPN level. An epileptic rat model was established and treated with AdipoRon, an ADPN receptor (AdipoR) agonist, which binds to AdipoR1 and AdipoR2. The Morris water maze test was used to assess the cognitive function of rats, and the expression levels of the synapsis‑associated proteins postsynaptic density protein 95 (PSD95), synaptosomal associated protein 25 (SNAP25) and synaptophysin (SYP), as well as AMP‑activated protein kinase (AMPK), mTOR, phosphorylated (p‑)AMPK and p‑mTOR were determined by immunoblotting. Serum ADPN levels were positively correlated with the Montreal cognitive assessment score. AdipoRon improved the cognitive function of epileptic rats, maintained the structural integrity of hippocampal neurons and reduced neuronal damage. It also promoted the mRNA expression of AdipoR1 and AdipoR2 in the hippocampus. Furthermore, AdipoRon increased the expression of the synapsis‑associated proteins PSD95, SNAP25 and SYP by activating the AMPK/mTOR signaling pathway. ADPN improved cognitive impairment in epilepsy by targeting the AMPK/mTOR signaling pathway, providing novel insights for the treatment of epilepsy.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726285/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adiponectin targets the AMPK/mTOR signaling pathway to alleviate cognitive impairment in epilepsy.\",\"authors\":\"Yaoyuan Zhang, Zhenzhen Qu, Zhuofeng Mao, Hu Liu, Weiping Wang, Lijing Jia\",\"doi\":\"10.3892/mmr.2025.13429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Among patients with chronic epilepsy, 70‑80% have cognitive impairment. To investigate the relationship between adiponectin (ADPN) and the cognitive level in epilepsy and its mechanism, 20 epileptic patients and 20 healthy controls were included for the assessment of the cognitive level. An ELISA was used to evaluate the serum ADPN level. An epileptic rat model was established and treated with AdipoRon, an ADPN receptor (AdipoR) agonist, which binds to AdipoR1 and AdipoR2. The Morris water maze test was used to assess the cognitive function of rats, and the expression levels of the synapsis‑associated proteins postsynaptic density protein 95 (PSD95), synaptosomal associated protein 25 (SNAP25) and synaptophysin (SYP), as well as AMP‑activated protein kinase (AMPK), mTOR, phosphorylated (p‑)AMPK and p‑mTOR were determined by immunoblotting. Serum ADPN levels were positively correlated with the Montreal cognitive assessment score. AdipoRon improved the cognitive function of epileptic rats, maintained the structural integrity of hippocampal neurons and reduced neuronal damage. It also promoted the mRNA expression of AdipoR1 and AdipoR2 in the hippocampus. Furthermore, AdipoRon increased the expression of the synapsis‑associated proteins PSD95, SNAP25 and SYP by activating the AMPK/mTOR signaling pathway. ADPN improved cognitive impairment in epilepsy by targeting the AMPK/mTOR signaling pathway, providing novel insights for the treatment of epilepsy.</p>\",\"PeriodicalId\":18818,\"journal\":{\"name\":\"Molecular medicine reports\",\"volume\":\"31 3\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726285/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular medicine reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/mmr.2025.13429\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13429","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在慢性癫痫患者中,70 - 80%存在认知障碍。为探讨脂联素(ADPN)与癫痫患者认知水平的关系及其机制,选取20例癫痫患者和20例健康对照进行认知水平评估。ELISA法检测血清ADPN水平。建立癫痫大鼠模型,并用ADPN受体(AdipoR)激动剂AdipoRon治疗,AdipoRon与AdipoR1和AdipoR2结合。采用Morris水迷宫法评估大鼠认知功能,免疫印迹法检测突触相关蛋白突触后密度蛋白95 (PSD95)、突触体相关蛋白25 (SNAP25)、突触素(SYP)以及AMP活化蛋白激酶(AMPK)、mTOR、磷酸化(p -)AMPK和p - mTOR的表达水平。血清ADPN水平与蒙特利尔认知评估评分呈正相关。AdipoRon改善癫痫大鼠认知功能,保持海马神经元结构完整性,减轻神经元损伤。促进海马组织中AdipoR1和AdipoR2 mRNA的表达。此外,AdipoRon通过激活AMPK/mTOR信号通路增加突触相关蛋白PSD95、SNAP25和SYP的表达。ADPN通过靶向AMPK/mTOR信号通路改善癫痫患者的认知障碍,为癫痫治疗提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adiponectin targets the AMPK/mTOR signaling pathway to alleviate cognitive impairment in epilepsy.

Among patients with chronic epilepsy, 70‑80% have cognitive impairment. To investigate the relationship between adiponectin (ADPN) and the cognitive level in epilepsy and its mechanism, 20 epileptic patients and 20 healthy controls were included for the assessment of the cognitive level. An ELISA was used to evaluate the serum ADPN level. An epileptic rat model was established and treated with AdipoRon, an ADPN receptor (AdipoR) agonist, which binds to AdipoR1 and AdipoR2. The Morris water maze test was used to assess the cognitive function of rats, and the expression levels of the synapsis‑associated proteins postsynaptic density protein 95 (PSD95), synaptosomal associated protein 25 (SNAP25) and synaptophysin (SYP), as well as AMP‑activated protein kinase (AMPK), mTOR, phosphorylated (p‑)AMPK and p‑mTOR were determined by immunoblotting. Serum ADPN levels were positively correlated with the Montreal cognitive assessment score. AdipoRon improved the cognitive function of epileptic rats, maintained the structural integrity of hippocampal neurons and reduced neuronal damage. It also promoted the mRNA expression of AdipoR1 and AdipoR2 in the hippocampus. Furthermore, AdipoRon increased the expression of the synapsis‑associated proteins PSD95, SNAP25 and SYP by activating the AMPK/mTOR signaling pathway. ADPN improved cognitive impairment in epilepsy by targeting the AMPK/mTOR signaling pathway, providing novel insights for the treatment of epilepsy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular medicine reports
Molecular medicine reports 医学-病理学
CiteScore
7.60
自引率
0.00%
发文量
321
审稿时长
1.5 months
期刊介绍: Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信