Boyi Chen, Zhefeng Leng, Jianhui Zhang, Xuefei Shi, Shunli Dong, Bin Wang
{"title":"Diagnostic Application of Bronchoalveolar Lavage Fluid Analysis in Cases of Idiopathic Pulmonary Fibrosis in which Diagnosis Cannot Be Confirmed by High-Resolution Computed Tomography.","authors":"Boyi Chen, Zhefeng Leng, Jianhui Zhang, Xuefei Shi, Shunli Dong, Bin Wang","doi":"10.1007/s00408-024-00758-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disorder characterized by dry cough, fatigue, and exacerbated dyspnea. The prognosis of IPF is notably unfavorable, becoming extremely poor when the disease advances acutely. Effective therapeutic intervention is essential to mitigate disease progression; hence, early diagnosis and treatment are paramount. When high-resolution computed tomography (HRCT) reveals usual interstitial pneumonia (UIP), a diagnosis of IPF can be established. However, when HRCT fails to conclusively confirm IPF, the diagnostic pathway becomes intricate and necessitates a multidisciplinary approach involving clinicians, radiologists, and pathologists. Consequently, the objective of this study was to investigate new diagnostic approaches through bronchoalveolar lavage (BAL) analysis.</p><p><strong>Methods: </strong>BAL is a commonly utilized diagnostic tool for interstitial lung diseases. We review the application of bronchoalveolar lavage (BALF) in idiopathic pulmonary fibrotic disease, emphasizing that the cellular and solute composition of the lower respiratory tract offers valuable insights.</p><p><strong>Results: </strong>This review delineates the advancements in diagnosing IPF cases that remain indeterminate via HRCT, leveraging BALF analysis. In contrast to surgical lung biopsy, BAL is minimally invasive and offers potential diagnostic utility through the identification of specific BALF biomarkers.</p><p><strong>Conclusion: </strong>Augment the clinical diagnostic armamentarium for IPF, particularly in scenarios where HRCT findings are inconclusive.</p>","PeriodicalId":18163,"journal":{"name":"Lung","volume":"203 1","pages":"16"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lung","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00408-024-00758-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Diagnostic Application of Bronchoalveolar Lavage Fluid Analysis in Cases of Idiopathic Pulmonary Fibrosis in which Diagnosis Cannot Be Confirmed by High-Resolution Computed Tomography.
Purpose: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disorder characterized by dry cough, fatigue, and exacerbated dyspnea. The prognosis of IPF is notably unfavorable, becoming extremely poor when the disease advances acutely. Effective therapeutic intervention is essential to mitigate disease progression; hence, early diagnosis and treatment are paramount. When high-resolution computed tomography (HRCT) reveals usual interstitial pneumonia (UIP), a diagnosis of IPF can be established. However, when HRCT fails to conclusively confirm IPF, the diagnostic pathway becomes intricate and necessitates a multidisciplinary approach involving clinicians, radiologists, and pathologists. Consequently, the objective of this study was to investigate new diagnostic approaches through bronchoalveolar lavage (BAL) analysis.
Methods: BAL is a commonly utilized diagnostic tool for interstitial lung diseases. We review the application of bronchoalveolar lavage (BALF) in idiopathic pulmonary fibrotic disease, emphasizing that the cellular and solute composition of the lower respiratory tract offers valuable insights.
Results: This review delineates the advancements in diagnosing IPF cases that remain indeterminate via HRCT, leveraging BALF analysis. In contrast to surgical lung biopsy, BAL is minimally invasive and offers potential diagnostic utility through the identification of specific BALF biomarkers.
Conclusion: Augment the clinical diagnostic armamentarium for IPF, particularly in scenarios where HRCT findings are inconclusive.
期刊介绍:
Lung publishes original articles, reviews and editorials on all aspects of the healthy and diseased lungs, of the airways, and of breathing. Epidemiological, clinical, pathophysiological, biochemical, and pharmacological studies fall within the scope of the journal. Case reports, short communications and technical notes can be accepted if they are of particular interest.