全钙钛矿串联光伏在光驱动电化学水分解中的性能及稳定性分析。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Junke Wang, Bruno Branco, Willemijn H M Remmerswaal, Shuaifeng Hu, Nick R M Schipper, Valerio Zardetto, Laura Bellini, Nicolas Daub, Martijn M Wienk, Atsushi Wakamiya, Henry J Snaith, René A J Janssen
{"title":"全钙钛矿串联光伏在光驱动电化学水分解中的性能及稳定性分析。","authors":"Junke Wang, Bruno Branco, Willemijn H M Remmerswaal, Shuaifeng Hu, Nick R M Schipper, Valerio Zardetto, Laura Bellini, Nicolas Daub, Martijn M Wienk, Atsushi Wakamiya, Henry J Snaith, René A J Janssen","doi":"10.1038/s41467-024-55654-4","DOIUrl":null,"url":null,"abstract":"<p><p>All-perovskite tandem photovoltaics are a potentially cost-effective technology to power chemical fuel production, such as green hydrogen. However, their application is limited by deficits in open-circuit voltage and, more challengingly, poor operational stability of the photovoltaic cell. Here we report a laboratory-scale solar-assisted water-splitting system using an electrochemical flow cell and an all-perovskite tandem solar cell. We begin by treating the perovskite surface with a propane-1,3-diammonium iodide solution that reduces interface non-radiative recombination losses and achieves an open-circuit voltage above 90% of the detailed-balance limit for single-junction solar cells between the bandgap of 1.6-1.8 eV. Specifically, a high open-circuit voltage of 1.35 V and maximum power conversion efficiency of 19.9% are achieved at a 1.77 eV bandgap. This enables monolithic all-perovskite tandem solar cells with a 26.0% power conversion efficiency at 1 cm<sup>2</sup> area and a pioneering photovoltaic-electrochemical system with a maximum solar-to-hydrogen efficiency of 17.8%. The system retains over 60% of its peak performance after operating for more than 180 h. We find that the performance loss is mainly due to the degradation of the photovoltaic component. We observe severe charge collection losses in the narrow-bandgap sub-cell that can be attributed to the interface degradation between the narrow-bandgap perovskite and the hole-transporting layer. Our study suggests that developing chemically stable absorbers and contact layers is critical for the applications of all-perovskite tandem photovoltaics.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"174"},"PeriodicalIF":15.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695925/pdf/","citationCount":"0","resultStr":"{\"title\":\"Performance and stability analysis of all-perovskite tandem photovoltaics in light-driven electrochemical water splitting.\",\"authors\":\"Junke Wang, Bruno Branco, Willemijn H M Remmerswaal, Shuaifeng Hu, Nick R M Schipper, Valerio Zardetto, Laura Bellini, Nicolas Daub, Martijn M Wienk, Atsushi Wakamiya, Henry J Snaith, René A J Janssen\",\"doi\":\"10.1038/s41467-024-55654-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>All-perovskite tandem photovoltaics are a potentially cost-effective technology to power chemical fuel production, such as green hydrogen. However, their application is limited by deficits in open-circuit voltage and, more challengingly, poor operational stability of the photovoltaic cell. Here we report a laboratory-scale solar-assisted water-splitting system using an electrochemical flow cell and an all-perovskite tandem solar cell. We begin by treating the perovskite surface with a propane-1,3-diammonium iodide solution that reduces interface non-radiative recombination losses and achieves an open-circuit voltage above 90% of the detailed-balance limit for single-junction solar cells between the bandgap of 1.6-1.8 eV. Specifically, a high open-circuit voltage of 1.35 V and maximum power conversion efficiency of 19.9% are achieved at a 1.77 eV bandgap. This enables monolithic all-perovskite tandem solar cells with a 26.0% power conversion efficiency at 1 cm<sup>2</sup> area and a pioneering photovoltaic-electrochemical system with a maximum solar-to-hydrogen efficiency of 17.8%. The system retains over 60% of its peak performance after operating for more than 180 h. We find that the performance loss is mainly due to the degradation of the photovoltaic component. We observe severe charge collection losses in the narrow-bandgap sub-cell that can be attributed to the interface degradation between the narrow-bandgap perovskite and the hole-transporting layer. Our study suggests that developing chemically stable absorbers and contact layers is critical for the applications of all-perovskite tandem photovoltaics.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"174\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695925/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55654-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55654-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

全钙钛矿串联光伏发电是一种潜在的具有成本效益的技术,可以为化学燃料生产提供动力,比如绿色氢。然而,它们的应用受到开路电压缺陷的限制,更具有挑战性的是,光伏电池的运行稳定性差。在这里,我们报告了一个实验室规模的太阳能辅助水分解系统,使用电化学流动电池和全钙钛矿串联太阳能电池。我们首先用丙烷-1,3-碘化二铵溶液处理钙钛矿表面,减少了界面非辐射复合损失,并在1.6-1.8 eV的带隙之间实现了超过单结太阳能电池详细平衡极限90%的开路电压。具体来说,在1.77 eV带隙下实现了1.35 V的高开路电压和19.9%的最大功率转换效率。这使得单片全钙钛矿串联太阳能电池在1平方厘米的面积上具有26.0%的功率转换效率,并且具有开创性的光伏电化学系统,最大太阳能转换为氢的效率为17.8%。系统运行超过180小时后,仍能保持峰值性能的60%以上。我们发现,性能损失主要是由于光伏组件的退化。我们观察到窄带隙亚电池中严重的电荷收集损失,这可归因于窄带隙钙钛矿和空穴传输层之间的界面退化。我们的研究表明,开发化学稳定的吸收剂和接触层对于全钙钛矿串联光伏的应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance and stability analysis of all-perovskite tandem photovoltaics in light-driven electrochemical water splitting.

All-perovskite tandem photovoltaics are a potentially cost-effective technology to power chemical fuel production, such as green hydrogen. However, their application is limited by deficits in open-circuit voltage and, more challengingly, poor operational stability of the photovoltaic cell. Here we report a laboratory-scale solar-assisted water-splitting system using an electrochemical flow cell and an all-perovskite tandem solar cell. We begin by treating the perovskite surface with a propane-1,3-diammonium iodide solution that reduces interface non-radiative recombination losses and achieves an open-circuit voltage above 90% of the detailed-balance limit for single-junction solar cells between the bandgap of 1.6-1.8 eV. Specifically, a high open-circuit voltage of 1.35 V and maximum power conversion efficiency of 19.9% are achieved at a 1.77 eV bandgap. This enables monolithic all-perovskite tandem solar cells with a 26.0% power conversion efficiency at 1 cm2 area and a pioneering photovoltaic-electrochemical system with a maximum solar-to-hydrogen efficiency of 17.8%. The system retains over 60% of its peak performance after operating for more than 180 h. We find that the performance loss is mainly due to the degradation of the photovoltaic component. We observe severe charge collection losses in the narrow-bandgap sub-cell that can be attributed to the interface degradation between the narrow-bandgap perovskite and the hole-transporting layer. Our study suggests that developing chemically stable absorbers and contact layers is critical for the applications of all-perovskite tandem photovoltaics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信