Marta Crous-Bou, Iolanda Lázaro, Núria Nadal-Zaragoza, Aleix Sala-Vila
{"title":"脂肪酸和端粒长度。","authors":"Marta Crous-Bou, Iolanda Lázaro, Núria Nadal-Zaragoza, Aleix Sala-Vila","doi":"10.1097/MCO.0000000000001093","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>This narrative review includes the latest clinical and preclinical evidence on fatty acid exposure and telomere length, a widely accepted hallmark of aging.</p><p><strong>Recent findings: </strong>A large body of literature focused on n-3 (omega-3) polyunsaturated fatty acids (PUFAs). Observational studies reported beneficial associations with telomere length for self-reported consumption of n-3 PUFA-rich foods; for estimated intake of n-3 PUFAs; and for n-3 PUFAs blood-based biomarkers in most (but not all) studies involving lipidomics, a promising tool in the field. Benefits were also observed in preclinical studies using different mouse models. Regarding other lipids, inconsistent findings were observed for circulating linoleic acid, whereas inverse associations with telomere length were reported for the n-6/n-3 PUFA ratio. Finally, a study using Mendelian randomization reported that monounsaturated fatty acids and PUFAs have a positive effect on telomere length, whereas the opposite was observed for saturated fatty acids.</p><p><strong>Summary: </strong>Evidence supporting that n-3 PUFAs might have beneficial effects on maintaining telomere length reinforce the salutary effects of these dietary fats. Approach considering the n-6/n-3 PUFA ratio is discouraged because it is sustained in the incorrect assumption that all species from the n-6 and n-3 families are functionally equivalent.</p>","PeriodicalId":10962,"journal":{"name":"Current Opinion in Clinical Nutrition and Metabolic Care","volume":" ","pages":"86-90"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatty acids and telomere length.\",\"authors\":\"Marta Crous-Bou, Iolanda Lázaro, Núria Nadal-Zaragoza, Aleix Sala-Vila\",\"doi\":\"10.1097/MCO.0000000000001093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>This narrative review includes the latest clinical and preclinical evidence on fatty acid exposure and telomere length, a widely accepted hallmark of aging.</p><p><strong>Recent findings: </strong>A large body of literature focused on n-3 (omega-3) polyunsaturated fatty acids (PUFAs). Observational studies reported beneficial associations with telomere length for self-reported consumption of n-3 PUFA-rich foods; for estimated intake of n-3 PUFAs; and for n-3 PUFAs blood-based biomarkers in most (but not all) studies involving lipidomics, a promising tool in the field. Benefits were also observed in preclinical studies using different mouse models. Regarding other lipids, inconsistent findings were observed for circulating linoleic acid, whereas inverse associations with telomere length were reported for the n-6/n-3 PUFA ratio. Finally, a study using Mendelian randomization reported that monounsaturated fatty acids and PUFAs have a positive effect on telomere length, whereas the opposite was observed for saturated fatty acids.</p><p><strong>Summary: </strong>Evidence supporting that n-3 PUFAs might have beneficial effects on maintaining telomere length reinforce the salutary effects of these dietary fats. Approach considering the n-6/n-3 PUFA ratio is discouraged because it is sustained in the incorrect assumption that all species from the n-6 and n-3 families are functionally equivalent.</p>\",\"PeriodicalId\":10962,\"journal\":{\"name\":\"Current Opinion in Clinical Nutrition and Metabolic Care\",\"volume\":\" \",\"pages\":\"86-90\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Clinical Nutrition and Metabolic Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MCO.0000000000001093\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Clinical Nutrition and Metabolic Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MCO.0000000000001093","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Purpose of review: This narrative review includes the latest clinical and preclinical evidence on fatty acid exposure and telomere length, a widely accepted hallmark of aging.
Recent findings: A large body of literature focused on n-3 (omega-3) polyunsaturated fatty acids (PUFAs). Observational studies reported beneficial associations with telomere length for self-reported consumption of n-3 PUFA-rich foods; for estimated intake of n-3 PUFAs; and for n-3 PUFAs blood-based biomarkers in most (but not all) studies involving lipidomics, a promising tool in the field. Benefits were also observed in preclinical studies using different mouse models. Regarding other lipids, inconsistent findings were observed for circulating linoleic acid, whereas inverse associations with telomere length were reported for the n-6/n-3 PUFA ratio. Finally, a study using Mendelian randomization reported that monounsaturated fatty acids and PUFAs have a positive effect on telomere length, whereas the opposite was observed for saturated fatty acids.
Summary: Evidence supporting that n-3 PUFAs might have beneficial effects on maintaining telomere length reinforce the salutary effects of these dietary fats. Approach considering the n-6/n-3 PUFA ratio is discouraged because it is sustained in the incorrect assumption that all species from the n-6 and n-3 families are functionally equivalent.
期刊介绍:
A high impact review journal which boasts an international readership, Current Opinion in Clinical Nutrition and Metabolic Care offers a broad-based perspective on the most recent and exciting developments within the field of clinical nutrition and metabolic care. Published bimonthly, each issue features insightful editorials and high quality invited reviews covering two or three key disciplines which include protein, amino acid metabolism and therapy, lipid metabolism and therapy, nutrition and the intensive care unit and carbohydrates. Each discipline introduces world renowned guest editors to ensure the journal is at the forefront of knowledge development and delivers balanced, expert assessments of advances from the previous year.