利用系统全外显子组测序数据再分析提高隐性智力残疾的诊断率。

IF 2.9 3区 医学 Q2 GENETICS & HEREDITY
Zohreh Fattahi, Ebrahim Shokouhian, Fatemeh Peymani, Mojgan Babanejad, Maryam Beheshtian, Masoud Edizadeh, Negar Molaei, Parnian Alagha, Fatemeh Ghodratpour, Fatemeh Keshavarzi, Masoumeh Goleyjani Moghadam, Sanaz Arzhangi, Kimia Kahrizi, Hossein Najmabadi
{"title":"利用系统全外显子组测序数据再分析提高隐性智力残疾的诊断率。","authors":"Zohreh Fattahi, Ebrahim Shokouhian, Fatemeh Peymani, Mojgan Babanejad, Maryam Beheshtian, Masoud Edizadeh, Negar Molaei, Parnian Alagha, Fatemeh Ghodratpour, Fatemeh Keshavarzi, Masoumeh Goleyjani Moghadam, Sanaz Arzhangi, Kimia Kahrizi, Hossein Najmabadi","doi":"10.1111/cge.14692","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in next generation sequencing (NGS) have positioned whole exome sequencing (WES) as an efficient first-tier method in genetic diagnosis. However, despite the diagnostic yield of 35%-50% in intellectual disability (ID) many patients still remain undiagnosed due to inherent limitations and bioinformatic short-comings. In this study, we reanalyzed WES data from 159 Iranian families showing recessively inherited ID. The reanalysis was conducted with an initial clinical re-evaluation of the patients and their families, followed by data reanalysis using two updated bioinformatic pipelines. In the first phase, the BWA-GATK pipeline was utilized for alignment and variant calling, with subsequent variant annotation by the ANNOVAR tool. This approach yielded causative variants in 17 families (10.6%). Among these, six genes (MAZ, ACTR5, AKTIP, MIX23, SERPINB12, and CDC25B) were identified as novel candidates potentially associated with ID, supported by bioinformatics functional annotation and segregation analysis. In the second phase, families with negative results were reassessed using the Illumina DRAGEN Bio-IT platform for variant-calling, and Ilyome, a newly developed web-based tool, for annotation. The second phase identified likely pathogenic variants in two additional families, increasing the total diagnostic yield to 11.9% which is consistent with other studies conducted on cohorts of patients with ID. In conclusion, identification of co-segregating variants in six novel candidate genes in this study, emphasizes once more on the potential of WES reanalysis to uncover previously unknown gene-disease associations. Notably, it demonstrates that systematic reanalysis of WES data using updated bioinformatic tools and a thorough review of the literature for new gene-disease associations while performing phenotypic re-evaluation, can improve diagnostic outcome of WES in recessively inherited ID. Consequently, if performed within a 1-3 year period, it can reduce the number of cases that may require other costly diagnostic methods such as whole genome sequencing.</p>","PeriodicalId":10354,"journal":{"name":"Clinical Genetics","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Diagnostic Yield in Recessive Intellectual Disability Utilizing Systematic Whole Exome Sequencing Data Reanalysis.\",\"authors\":\"Zohreh Fattahi, Ebrahim Shokouhian, Fatemeh Peymani, Mojgan Babanejad, Maryam Beheshtian, Masoud Edizadeh, Negar Molaei, Parnian Alagha, Fatemeh Ghodratpour, Fatemeh Keshavarzi, Masoumeh Goleyjani Moghadam, Sanaz Arzhangi, Kimia Kahrizi, Hossein Najmabadi\",\"doi\":\"10.1111/cge.14692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advances in next generation sequencing (NGS) have positioned whole exome sequencing (WES) as an efficient first-tier method in genetic diagnosis. However, despite the diagnostic yield of 35%-50% in intellectual disability (ID) many patients still remain undiagnosed due to inherent limitations and bioinformatic short-comings. In this study, we reanalyzed WES data from 159 Iranian families showing recessively inherited ID. The reanalysis was conducted with an initial clinical re-evaluation of the patients and their families, followed by data reanalysis using two updated bioinformatic pipelines. In the first phase, the BWA-GATK pipeline was utilized for alignment and variant calling, with subsequent variant annotation by the ANNOVAR tool. This approach yielded causative variants in 17 families (10.6%). Among these, six genes (MAZ, ACTR5, AKTIP, MIX23, SERPINB12, and CDC25B) were identified as novel candidates potentially associated with ID, supported by bioinformatics functional annotation and segregation analysis. In the second phase, families with negative results were reassessed using the Illumina DRAGEN Bio-IT platform for variant-calling, and Ilyome, a newly developed web-based tool, for annotation. The second phase identified likely pathogenic variants in two additional families, increasing the total diagnostic yield to 11.9% which is consistent with other studies conducted on cohorts of patients with ID. In conclusion, identification of co-segregating variants in six novel candidate genes in this study, emphasizes once more on the potential of WES reanalysis to uncover previously unknown gene-disease associations. Notably, it demonstrates that systematic reanalysis of WES data using updated bioinformatic tools and a thorough review of the literature for new gene-disease associations while performing phenotypic re-evaluation, can improve diagnostic outcome of WES in recessively inherited ID. Consequently, if performed within a 1-3 year period, it can reduce the number of cases that may require other costly diagnostic methods such as whole genome sequencing.</p>\",\"PeriodicalId\":10354,\"journal\":{\"name\":\"Clinical Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/cge.14692\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cge.14692","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

新一代测序(NGS)的最新进展使全外显子组测序(WES)成为一种有效的遗传诊断的一线方法。然而,尽管智力残疾(ID)的诊断率为35%-50%,但由于固有的局限性和生物信息学的缺陷,许多患者仍未得到诊断。在这项研究中,我们重新分析了来自159个隐性遗传ID的伊朗家庭的WES数据。再分析是通过对患者及其家属的初步临床再评估进行的,随后使用两个更新的生物信息管道对数据进行再分析。在第一阶段,利用BWA-GATK管道进行比对和变体调用,随后使用ANNOVAR工具对变体进行注释。该方法在17个家族(10.6%)中获得致病变异。其中,6个基因(MAZ、ACTR5、AKTIP、MIX23、SERPINB12和CDC25B)被确定为可能与ID相关的新候选基因,并得到了生物信息学功能注释和分离分析的支持。在第二阶段,使用Illumina DRAGEN Bio-IT平台进行变异召唤,并使用新开发的基于网络的工具Ilyome进行注释,对阴性结果的家族进行重新评估。第二阶段在另外两个家族中确定了可能的致病变异,将总诊断率提高到11.9%,这与在ID患者队列中进行的其他研究一致。总之,本研究中6个新的候选基因共分离变异的鉴定,再次强调了WES再分析在揭示以前未知的基因与疾病关联方面的潜力。值得注意的是,该研究表明,使用最新的生物信息学工具系统地重新分析WES数据,并在进行表型重新评估的同时对新的基因与疾病关联的文献进行全面回顾,可以提高隐性遗传ID中WES的诊断结果。因此,如果在1-3年内进行,它可以减少可能需要其他昂贵的诊断方法(如全基因组测序)的病例数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Diagnostic Yield in Recessive Intellectual Disability Utilizing Systematic Whole Exome Sequencing Data Reanalysis.

Recent advances in next generation sequencing (NGS) have positioned whole exome sequencing (WES) as an efficient first-tier method in genetic diagnosis. However, despite the diagnostic yield of 35%-50% in intellectual disability (ID) many patients still remain undiagnosed due to inherent limitations and bioinformatic short-comings. In this study, we reanalyzed WES data from 159 Iranian families showing recessively inherited ID. The reanalysis was conducted with an initial clinical re-evaluation of the patients and their families, followed by data reanalysis using two updated bioinformatic pipelines. In the first phase, the BWA-GATK pipeline was utilized for alignment and variant calling, with subsequent variant annotation by the ANNOVAR tool. This approach yielded causative variants in 17 families (10.6%). Among these, six genes (MAZ, ACTR5, AKTIP, MIX23, SERPINB12, and CDC25B) were identified as novel candidates potentially associated with ID, supported by bioinformatics functional annotation and segregation analysis. In the second phase, families with negative results were reassessed using the Illumina DRAGEN Bio-IT platform for variant-calling, and Ilyome, a newly developed web-based tool, for annotation. The second phase identified likely pathogenic variants in two additional families, increasing the total diagnostic yield to 11.9% which is consistent with other studies conducted on cohorts of patients with ID. In conclusion, identification of co-segregating variants in six novel candidate genes in this study, emphasizes once more on the potential of WES reanalysis to uncover previously unknown gene-disease associations. Notably, it demonstrates that systematic reanalysis of WES data using updated bioinformatic tools and a thorough review of the literature for new gene-disease associations while performing phenotypic re-evaluation, can improve diagnostic outcome of WES in recessively inherited ID. Consequently, if performed within a 1-3 year period, it can reduce the number of cases that may require other costly diagnostic methods such as whole genome sequencing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Genetics
Clinical Genetics 医学-遗传学
CiteScore
6.50
自引率
0.00%
发文量
175
审稿时长
3-8 weeks
期刊介绍: Clinical Genetics links research to the clinic, translating advances in our understanding of the molecular basis of genetic disease for the practising clinical geneticist. The journal publishes high quality research papers, short reports, reviews and mini-reviews that connect medical genetics research with clinical practice. Topics of particular interest are: • Linking genetic variations to disease • Genome rearrangements and disease • Epigenetics and disease • The translation of genotype to phenotype • Genetics of complex disease • Management/intervention of genetic diseases • Novel therapies for genetic diseases • Developmental biology, as it relates to clinical genetics • Social science research on the psychological and behavioural aspects of living with or being at risk of genetic disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信