Margaux Caperaa, Mathilde Roland-Caverivière, Chelsea Herdman, Nesrine Imloul, Sandrine Poulin, Mado Lemieux, Paul De Koninck, Gabriel D Bossé
{"title":"幼体斑马鱼感觉运动反应的发展:野生型和转基因GCaMP6s系的比较。","authors":"Margaux Caperaa, Mathilde Roland-Caverivière, Chelsea Herdman, Nesrine Imloul, Sandrine Poulin, Mado Lemieux, Paul De Koninck, Gabriel D Bossé","doi":"10.1016/j.bbr.2024.115412","DOIUrl":null,"url":null,"abstract":"<p><p>During early development, zebrafish larvae exhibit stereotypical behaviors, which rapidly become more complex. Thus, generating mutant transgenic lines that maintain transparency throughout their larval stage and that can be used to record brain activity has offered strategic opportunities to investigate the underlying neural correlates of behavior establishment. However, few studies have documented the sensorimotor profile of these lines during larval development. Here, we set up a behavioral characterization using diverse stimuli (light and vibration) throughout larval development to compare the responses of a transgenic strain expressing a pan-neuronal calcium indicator (GCaMP6s) with that of a wild-type strain. Interestingly, we report a drastic switch in behavioral responses to light transitions at 11 days post-fertilization (dpf) and to vibration stimuli at 14 dpf in both lines. These data highlight a specific time window representing an increase in behavioral complexity. Meanwhile, we found some differences in the maturation of sensorimotor responses between GCaMP6s and wild-type strains. Although some of these differences are minor, they highlight the need for careful attention when using mutant/transgenic lines for behavioral studies. Overall, our results support using GCaMP6s strain in investigating the neural mechanisms underlying the developmental maturation of sensorimotor responses.</p>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":" ","pages":"115412"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of sensorimotor responses in larval zebrafish: A comparison between wild-type and GCaMP6s transgenic line.\",\"authors\":\"Margaux Caperaa, Mathilde Roland-Caverivière, Chelsea Herdman, Nesrine Imloul, Sandrine Poulin, Mado Lemieux, Paul De Koninck, Gabriel D Bossé\",\"doi\":\"10.1016/j.bbr.2024.115412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During early development, zebrafish larvae exhibit stereotypical behaviors, which rapidly become more complex. Thus, generating mutant transgenic lines that maintain transparency throughout their larval stage and that can be used to record brain activity has offered strategic opportunities to investigate the underlying neural correlates of behavior establishment. However, few studies have documented the sensorimotor profile of these lines during larval development. Here, we set up a behavioral characterization using diverse stimuli (light and vibration) throughout larval development to compare the responses of a transgenic strain expressing a pan-neuronal calcium indicator (GCaMP6s) with that of a wild-type strain. Interestingly, we report a drastic switch in behavioral responses to light transitions at 11 days post-fertilization (dpf) and to vibration stimuli at 14 dpf in both lines. These data highlight a specific time window representing an increase in behavioral complexity. Meanwhile, we found some differences in the maturation of sensorimotor responses between GCaMP6s and wild-type strains. Although some of these differences are minor, they highlight the need for careful attention when using mutant/transgenic lines for behavioral studies. Overall, our results support using GCaMP6s strain in investigating the neural mechanisms underlying the developmental maturation of sensorimotor responses.</p>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":\" \",\"pages\":\"115412\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bbr.2024.115412\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.bbr.2024.115412","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Development of sensorimotor responses in larval zebrafish: A comparison between wild-type and GCaMP6s transgenic line.
During early development, zebrafish larvae exhibit stereotypical behaviors, which rapidly become more complex. Thus, generating mutant transgenic lines that maintain transparency throughout their larval stage and that can be used to record brain activity has offered strategic opportunities to investigate the underlying neural correlates of behavior establishment. However, few studies have documented the sensorimotor profile of these lines during larval development. Here, we set up a behavioral characterization using diverse stimuli (light and vibration) throughout larval development to compare the responses of a transgenic strain expressing a pan-neuronal calcium indicator (GCaMP6s) with that of a wild-type strain. Interestingly, we report a drastic switch in behavioral responses to light transitions at 11 days post-fertilization (dpf) and to vibration stimuli at 14 dpf in both lines. These data highlight a specific time window representing an increase in behavioral complexity. Meanwhile, we found some differences in the maturation of sensorimotor responses between GCaMP6s and wild-type strains. Although some of these differences are minor, they highlight the need for careful attention when using mutant/transgenic lines for behavioral studies. Overall, our results support using GCaMP6s strain in investigating the neural mechanisms underlying the developmental maturation of sensorimotor responses.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.